

 \(\renewcommand\AA{\text{Å}}\)

GSAS-II Scripting Manual

This is a subset of the
Developer’s Documentation [https://gsas-ii.readthedocs.io/en/latest/]
covering the GSASIIscriptable package, used to
create Python scripts for running GSAS-II.
Note that most
data structures used in GSAS-II are defined in module GSASIIobj, also
included here.

Documentation Version:

This documentation was prepared from GSAS-II version bfae21 dated 17-May-2024 21:54 with the most recent tag as version #5786

Contents:

	1. GSAS-II Requirements, Python Packages and External Software
	1.1. Supported Platforms

	1.2. Version Control

	1.3. Python Requirements

	1.4. GUI Requirements

	1.5. Scripting Requirements

	1.6. Optional Python Packages

	1.7. Required Binary Files

	1.8. Supported Externally-Developed Software

	2. GSASIIobj: Data objects & Docs
	2.1. Summary/Contents

	2.2. Variable names in GSAS-II

	2.3. Constraints Tree Item

	2.4. Covariance Tree Item

	2.5. Phase Tree Items

	2.6. Rigid Body Objects

	2.7. Space Group Objects

	2.8. Phase Information

	2.9. Powder Diffraction Tree Items

	2.10. Powder Reflection Data Structure

	2.11. Single Crystal Tree Items

	2.12. Single Crystal Reflection Data Structure

	2.13. Image Data Structure

	2.14. Parameter Dictionary

	2.15. Texture implementation

	2.16. ISODISTORT implementation

	2.17. Parameter Limits

	2.18. GSASIIobj Classes and routines

	3. GSASIIscriptable: Scripting Interface
	3.1. Summary/Contents

	3.2. Installation of GSASIIscriptable

	3.3. Application Interface (API) Summary

	3.4. Refinement parameters

	3.5. Specifying Refinement Parameters

	3.6. Access to other parameter settings

	3.7. Code Examples

	3.8. GSASIIscriptable Command-line Interface

	3.9. API: Complete Documentation

	4. Indices
	4.1. General Index

 \(\renewcommand\AA{\text{Å}}\)

1. GSAS-II Requirements, Python Packages and External Software

1.1. Supported Platforms

It should be possible to run GSAS-II on any computer where Python 3.7+ and
the appropriate required packages are available, as discussed below,
but GSAS-II also requires that some code must be compiled.
For the following platforms, binary images for this compiled code are
currently provided:

	Windows-10: 64-bit Intel-compatible processors

	MacOS: Intel processors

	MacOS: ARM processors, aka Apple Silicon (M1, etc)

	Linux: 64-bit Intel-compatible processors

	Linux: ARM processors (64-bit Raspberry Pi OS only)

Details for GSAS-II use on these specific platforms follows below:

	Windows: self-Installation kits are provided for
64-bit Windows-10 and -11
here [https://github.com/AdvancedPhotonSource/GSAS-II-buildtools/releases/latest].
Less testing has been done with
Windows-11, but both appear to working interchangeably with respect
to GSAS-II.

In theory it should be possible to run GSAS-II on older versions of
Windows, including 32-bit OS versions, but no current installation kit
can be provided. Installing GSAS-II will require locating a
compatible version (or compiling) Python and the required
packages. It may be necessary to recompile the GSAS-II binaries.

	MacOS: GSAS-II can run natively on Intel (or ARM (“M1”-“M3” aka “Apple
Silicon”) processors with relatively current versions of MacOS, with
self-installers that can be run from the command-line available for download here [https://github.com/AdvancedPhotonSource/GSAS-II-buildtools/releases/latest].
The Intel version will run on both types of Mac processors, but the
native ARM versions offer the highest GSAS-II performance we see on
any platform.

It appears that this installer can be used with MacOS versions 11.0
and later. Macs older than Catalina (10.15) will likely require older
distributions of Python.

	Intel Linux: Note that GSAS-II does not get a lot of testing
in Linux by us, but is used fairly widely on this platform
nonetheless. We provide an installer here [https://github.com/AdvancedPhotonSource/GSAS-II-buildtools/releases/latest]
that includes Python and
needed packages for Intel-compatible Linuxes, but compatibility with
older and very new versions of Linux can sometimes be tricky as
compatibility libraries may be needed – not always easy to do. It may be
better to use your Linux distribution’s versions of Python and
packages (typically done with a software tool such as apt or yum or
pip. See
https://advancedphotonsource.github.io/GSAS-II-tutorials/install-pip.html
for more information.

	Non-Intel Linux:
Will GSAS-II run on Linux with other types of CPUs? That will mostly
depend on support for Python and wxPython on that CPU. If those can
be used, you can likely build the GSAS-II binaries with gcc &
gfortran. Expect to modify the SConstruct file.

Raspberry Pi (ARM) Linux: GSAS-II has been installed on both 32-bit
and the 64-bit version of the Raspberry Pi OS (formerly
called Raspbian) and compiled binaries are provided at present for
both, but the 32-bit support may not continue. It is expected that
these binaries will also function on Ubuntu Linux for Raspberry Pi,
but this has not been tried.
The performance of GSAS-II on a Raspberry Pi is not blindingly fast,
but one can indeed run GSAS-II on a motherboard that costs only $15
(perhaps even one that costs $5) and uses <5 Watts!

Note that the 64-bit OS is preferred on the models where it can be run
(currently including models 3A+, 3B, 3B+, 4, 400, CM3, CM3+, CM4,
and Zero 2 W) . With the 32-bit Raspberry Pi OS, which does run on
all Raspberry Pi models, it is necessary to use the OS distribution’s
versions of Python and its packages, see here for more information [https://advancedphotonsource.github.io/GSAS-II-tutorials/install-pip.html].
With
64-bit Pi OS it may be possible for us to provide a GSAS2FULL installer
(which will need to include a custom-supplied wxPython wheel, since
that is not available in conda-forge) or else pip must be used to
download and build wx. Please let us know if you are intending to
use GSAS-II on a Raspberry Pi for a classroom, etc and would need
this.

1.2. Version Control

The master version of the source code for GSAS-II resides on
GitHub at URL and the git
version control system (VCS) is usually used to install the files needed by GSAS-II. When
GSAS-II is installed in this manner, the software can be easily
updated, as git commands can download only the changed sections of files
that need to be updated. It is likewise possible to use git to regress
to an older version of GSAS-II, though there are some limitations on
how far back older versions of GSAS-II will be with current versions
of Python. While git is not required for use of GSAS-II, special
procedures must be used to install GSAS-II without it and once
installed without git, updates of GSAS-II must be done manually.

We are currently in a transition period to GitHub from
a previous subversion server. As we migrate to GitHub, updates will be
made in parallel to both servers.

1.3. Python Requirements

GSAS-II requires a standard Python interpreter to be installed, as
well as several separately-developed packages that are not supplied
with Python, as are described below.
While for some packages, we have not seen much dependence on
versions, for others we do find significant differences; this is also
discussed further below. The GSAS-II GUI will warn about Python and
packages versions that are believed to be problematic,
as defined in variable GSASIIdataGUI.versionDict,
but for new installations we are currently recommending the following
interpreter/package versions:

	Python 3.11 is recommended. GSAS-II should run with any Python
version from 3.7 or later, but you will need to locate (from the
old subversion server) or locate binaries to match that Python version.

	wxPython 4.2 or later is recommended, but with Python <=3.9 any
wx4.x version should be OK. However, there may be problems with
newer sections of the GUI with wx <4.0.

	NumPy 1.26 recommended, but anything from 1.17 on is likely fine,
but does need to approximately match the GSAS-II binaries.

	matplotlib 3.6 is recommended, but 3.4 or later is preferred.

	pyOpenGL: no version-related problems have been seen.

	SciPy: no version-related problems have been seen, but in at least one
case multiple imports are tried to account for where function
names have changed.

For more details on problems noted with specific versions of Python
and Python packages, see comments below and details here:
GSASIIdataGUI.versionDict,

Note that GSAS-II is currently being developed using Python 3.11. We
are seeing compilation problems with Python 3.12 that will be addressed
later via the build migration to meson. We are no longer
supporting Python 2.7 and <=3.6, and strongly encourage that
systems running GSAS-II under these older Python versions reinstall
Python. Typically this is done by reinstalling GSAS-II from a current self-installer.

There are a number of ways to install Python plus the packages
needed by GSAS-II. See
https://advancedphotonsource.github.io/GSAS-II-tutorials/install.html
and links therein for a discussion of installation.

Python package requirements depend on how GSAS-II will be run, as will be
discussed in the next section. In order to run
the GUI for GSAS-II, a much larger number of packages are
required. Several more packages are optional, but some functionally will
not be available without those optional packages.
Far fewer packages are required to run GSAS-II on a
compute server via the scripting interface
and without a GUI.

1.4. GUI Requirements

When using the GSAS-II graphical user interface (GUI), the following
Python extension packages are required:

	wxPython (http://wxpython.org/docs/api/). Note that GSAS-II has been
tested with various wxPython versions over the years. We encourage
use of 4.x with Python 3.x, but with Py>=3.10 you must use
wxPython 4.2.0 or later.

	NumPy (http://docs.scipy.org/doc/numpy/reference/),

	SciPy (http://docs.scipy.org/doc/scipy/reference/),

	matplotlib (http://matplotlib.org/contents.html) and

	PyOpenGL (http://pyopengl.sourceforge.net/documentation).

GSAS-II will not start if the above packages are not available. In
addition, several Python packages are referenced in sections of the
GUI code, but are not required. If these packages are not present, warning
messages may be generated if they would be needed, or menu items may
be omitted, but the vast bulk of GSAS-II will function normally. These
optional packages are:

	gitpython: (https://gitpython.readthedocs.io and
https://github.com/gitpython-developers/GitPython). This
this package provides a bridge between the git version control
system and Python. It is required for the standard GSAS-II
installation process and for GSAS-II to update itself from GitHub.
If your computer does not already have git in the path, also include
the git package to obtain that binary (if you are not sure, it does
not hurt to do this anyway).

	requests: this package simplifies http access
(https://requests.readthedocs.io/). It is used for access to
webpages such as ISODISTORT and for some internal software
downloads. It is required for support of git updating and installation.

	Pillow (https://pillow.readthedocs.org) or PIL (http://www.pythonware.com/products/pil/). This is used to read and save certain types of images.

	h5py is the HDF5 interface and hdf5 is the support package. These
packages are (not surprisingly) required
to import images from HDF5 files. If these libraries are not present,
the HDF5 importer(s) will not appear in the import menu and a
warning message appears on GSAS-II startup.

	imageio is used to make movies. This is optional and is offered for plotting
superspace (modulated) structures.

	win32com (windows only): this module is
used to install GSAS-II on windows machines. GSAS-II can be used on
Windows without this, but the installation will offer less
integration into Windows. Conda provides this under the name pywin32.

	conda: the conda package allows access to package installation,
etc. features from inside Python. It is not required but is helpful
to have, as it allows GSAS-II to install some packages that are not
supplied initially. The conda package is included by default in
the base miniconda and anaconda installations, but if you create an
environment for GSAS-II
(conda create -n <env> package-list…), it will not be added
to that environment unless you request it specifically.

	Conda command:
	Should you wish to install Python and the desired packages yourself,
this is certainly possible. For Linux, apt or yum is an option, as is
homebrew. Homebrew is a good option on MacOS. However, we recommend use
of the miniforge self-installers from
conda-forge. Here is a typical conda command used to install a GSAS-II compatible
Python interpreter after miniforge has been installed:

conda install python=3.11 numpy=1.26 wxpython scipy matplotlib pyopengl pillow h5py imageio requests git gitpython -c conda-forge

for development environments, it is useful to have build and
debugging tools available, so here is a more extensive list of
useful packages:

conda create -n py311 python=3.11 numpy=1.26 matplotlib scipy wxpython pyopengl imageio h5py hdf5 pillow requests ipython conda spyder-kernels scons sphinx sphinx-rtd-theme jupyter git gitpython -c conda-forge

To find out what packages have been directly installed in a conda
environment this command can be used:

conda env export --from-history -n <env>

1.5. Scripting Requirements

The GSAS-II scripting interface (GSASIIscriptable) will not
run without two Python extension packages:

	NumPy (http://docs.scipy.org/doc/numpy/reference/),

	SciPy (http://docs.scipy.org/doc/scipy/reference/).

These fortunately are common and are easy to install. There are
some relatively minor scripting capabilities that will only run when a few
additional packages are installed:

	matplotlib (http://matplotlib.org/contents.html),

	Pillow (https://pillow.readthedocs.org) and/or

	h5py and hdf5

but none of these are required to run scripts and the vast
majority of scripts will not need these packages.

Installing a minimal Python configuration:

There are many ways to install a minimal Python configuration.
Below, I show some example commands used to install using the
the free miniconda installer from Anaconda, Inc., but I now tend to
use the Conda-Forge miniforge distributions instead.
However, there are also plenty of other ways to install Python, Numpy
and Scipy, depending on if they will be used on Linux, Windows and MacOS.
For Linux, the standard Linux distributions provide these using
yum or apt-get etc., but these often supply package versions
that are so new that they probably have not been tested with GSAS-II.

bash ~/Downloads/Miniconda3-latest-<platform>-x86_64.sh -b -p /loc/pyg2script
source /loc/pyg2script/bin/activate
conda install numpy scipy matplotlib pillow h5py hdf5

Some discussion on these commands follows:

	the 1st command (bash) assumes that the appropriate version of Miniconda has been downloaded from https://docs.conda.io/en/latest/miniconda.html and /loc/pyg2script is where I have selected for python to be installed. You might want to use something like ~/pyg2script.

	the 2nd command (source) is needed to access Python with miniconda.

	the 3rd command (conda) installs all possible packages that might be
used by scripting, but matplotlib, pillow, and hdf5 are not commonly
needed and could be omitted.

Once Python has been installed and is in the path, use these commands to install GSAS-II:

git clone https://github.com/AdvancedPhotonSource/GSAS-II.git /loc/GSAS-II
python /loc/GSAS-II/GSASII/GSASIIscriptable.py

Notes on these commands:

	the 1st command (git) is used to download the GSAS-II software. /loc/GSASII is the location where I decided to install the software. You can select something different.

	the 2nd command (python) is used to invoke GSAS-II scriptable for the first time, which is needed to load the binary files from the server.

1.6. Optional Python Packages

	Sphinx (https://www.sphinx-doc.org) is used to generate the
documentation you are currently reading. Generation of this documentation
is not generally something needed by users or even most code
developers, since the prepared documentation on
https://gsas-ii.readthedocs.io is usually reasonably up to date.

	
	SCons (https://scons.org/) is used to compile the relatively small amount of
	Fortran code that is included with GSAS-II. Use of this is
discussed in the next section of this chapter.

1.7. Required Binary Files

As noted before, GSAS-II also requires that some code be compiled.
For the following platforms, binary images are provided at
https://github.com/AdvancedPhotonSource/GSAS-II-buildtools/releases/latest
for Python 3.11 and NumPy 1.26:

	Windows-10: 64-bit Intel-compatible processors.

	MacOS: Intel processors.

	MacOS: ARM processors, aka Apple Silicon (M1, etc).

	Linux: 64-bit Intel-compatible processors.

	Linux: ARM processors (64-bit and 32-bit Raspberry Pi OS and
Ubuntu for Raspberry Pi).

Note that these binaries must match the major versions of both Python and
NumPy;
Should one wish to run GSAS-II where binary files are not
supplied (such as 32-bit Windows or Linux) or with other combinations of
Python/NumPy, compilation will be need to be done by the user. See
the compilation information [https://advancedphotonsource.github.io/GSAS-II-tutorials/compile.html] for more information.

1.8. Supported Externally-Developed Software

GSAS-II provides interfaces to use a number of programs developed by
others. Some are included with GSAS-II and others must be installed
separately. When these programs are accessed, citation
information is provided as we hope that users will recognize the
contribution made by the authors of these programs and will honor those
efforts by citing that work in addition to GSAS-II.

GSAS-II includes copies of the following programs. No additional steps
beyond a standard installation are needed to access their functionality.

	DIFFaX
	Simulate layered structures with faulting. https://www.public.asu.edu/~mtreacy/DIFFaX.html

	PyCifRW
	A software library that reads and writes files using the IUCr’s
Crystallographic Information Framework (CIF).
https://bitbucket.org/jamesrhester/pycifrw. GSAS-II uses this to
read data and structures from CIF files,

	Shapes
	Derives the shapes of particles from small angle scattering data.

	NIST FPA
	Use Fundamental Parameters to determine GSAS-II profile function

	NIST*LATTICE
	Searches for higher symmetry unit cells and possible relationships
between unit cells. An API has been written and this will be
integrated into the GSAS-II GUI.

	pybaselines
	Determines a background for a powder pattern in the “autobackground”
option. See https://pybaselines.readthedocs.io for more
information.

The following web services can also be accessed from computers that
have internet access. All software needed for this access is included
with GSAS-II.

	Bilbao Crystallographic Server (https://www.cryst.ehu.es):
	GSAS-II can directly access the Bilbao Crystallographic Server to
utilize the k-SUBGROUPSMAG, k-SUBGROUPS and PseudoLattice web utilities for
computation of space group subgroups, color (magnetic) subgroups &
lattice search.

	BYU ISOTROPY Software Suite (https://stokes.byu.edu/iso/isotropy.php):
	GSAS-II directly accesses capabilities in the ISOTROPY Software
Suite from Brigham Young University for representational analysis
and magnetism analysis.

At the request of the program authors, other programs that can be
accessed within GSAS-II are not included
as part of the GSAS-II distribution and must be installed separately:

	Dysnomia
	Computes enhanced Fourier maps with Maximum Entropy estimated
extension of the reflection sphere. See https://jp-minerals.org/dysnomia/en/.

	RMCProfile
	Provides large-box PDF & S(Q) fitting. The GSAS-II interface was originally
written for use with release 6.7.7 of RMCProfile, but updates have
been made for compatible with 6.7.9 as well.
RMCProfile must be downloaded by the user from
http://rmcprofile.org/Downloads or
https://rmcprofile.pages.ornl.gov/nav_pages/download/

	fullrmc
	A modern software framework for large-box PDF & S(Q) fitting. Note
that the GSAS-II implementation is not compatible with the last
open-source version of fullrmc, but rather the version 5.0 must be
used, which is distributed only as compiled versions and only for 64-bit
Intel-compatible processors running Windows, Linux and
MacOS. Download this as a single executable from website
https://github.com/bachiraoun/fullrmc/tree/master/standalones. GSAS-II
will offer to install this software into the binary directory when the fullrmc
option is selected on the Phase/RMC tab.

	PDFfit2
	For small-box fitting of PDFs; see
https://github.com/diffpy/diffpy.pdffit2#pdffit2. This code is no
longer being updated by the authors, but is still quite useful.
It is supplied within GSAS-II for Python 3.7.
It is likely best to install a separate Python
interpreter specifically for PDFfit2. When GSAS-II is run from a
Python installation that includes the conda package manager (the
usual installation practice), the GUI will offer an option to
install PDFfit2 via a separate environment when the
PDFfit2 option is selected on the Phase/RMC tab.

 \(\renewcommand\AA{\text{Å}}\)

2. GSASIIobj: Data objects & Docs

2.1. Summary/Contents

This module defines and/or documents the data structures used in GSAS-II, as well
as provides misc. support routines.

Section Contents

	GSASIIobj: Data objects & Docs

	Summary/Contents

	Variable names in GSAS-II

	Constraints Tree Item

	Covariance Tree Item

	Phase Tree Items

	Rigid Body Objects

	Space Group Objects

	Phase Information

	Atom Records

	Drawing Atom Records

	Rigid Body Insertions

	Powder Diffraction Tree Items

	CW Instrument Parameters

	TOF Instrument Parameters

	Powder Reflection Data Structure

	Single Crystal Tree Items

	Single Crystal Reflection Data Structure

	Image Data Structure

	Parameter Dictionary

	Texture implementation

	ISODISTORT implementation

	Displacive modes

	Occupancy modes

	Mode Computations

	Parameter Limits

	GSASIIobj Classes and routines

2.2. Variable names in GSAS-II

Parameter are named using the following pattern,
p:h:<var>:n, where <var> is a variable name, as shown in the following table. Also,
p is the phase number, h is the histogram number,
and n is the atom parameter number
If a parameter does not depend on a histogram, phase or atom, h, p and/or n will be omitted,
so p::<var>:n, :h:<var> and p:h:<var> are all valid names.

Naming for GSAS-II parameter names, p:h:<var>:n

	<var>

	usage

	\(\scriptstyle K\) (example: a)

	Lattice parameter, \(\scriptstyle K\), from Ai and Djk; where \(\scriptstyle K\) is one of the characters a, b or c.

	α

	Lattice parameter, α, computed from both Ai and Djk.

	β

	Lattice parameter, β, computed from both Ai and Djk.

	γ

	Lattice parameter, γ, computed from both Ai and Djk.

	Scale

	Phase fraction (as p:h:Scale) or Histogram scale factor (as :h:Scale).

	A\(\scriptstyle I\) (example: A0)

	Reciprocal metric tensor component \(\scriptstyle I\); where \(\scriptstyle I\) is a digit between 0 and 5.

	\(\scriptstyle L\)ol (example: vol)

	Unit cell volume; where \(\scriptstyle L\) is one of the characters v or V.

	dA\(\scriptstyle M\) (example: dAx)

	Refined change to atomic coordinate, \(\scriptstyle M\); where \(\scriptstyle M\) is one of the characters x, y or z.

	A\(\scriptstyle M\) (example: Ax)

	Fractional atomic coordinate, \(\scriptstyle M\); where \(\scriptstyle M\) is one of the characters x, y or z.

	AUiso

	Atomic isotropic displacement parameter.

	AU\(\scriptstyle N_0\)\(\scriptstyle N_1\) (example: AU11)

	Atomic anisotropic displacement parameter U\(\scriptstyle N_0\)\(\scriptstyle N_1\); where \(\scriptstyle N_0\) is one of the characters 1, 2 or 3 and \(\scriptstyle N_1\) is one of the characters 1, 2 or 3.

	Afrac

	Atomic site fraction parameter.

	Amul

	Atomic site multiplicity value.

	AM\(\scriptstyle M\) (example: AMx)

	Atomic magnetic moment parameter, \(\scriptstyle M\); where \(\scriptstyle M\) is one of the characters x, y or z.

	Akappa\(\scriptstyle O\) (example: Akappa0)

	Atomic orbital softness for orbital, \(\scriptstyle O\); where \(\scriptstyle O\) is one of the characters 0, - or 6.

	ANe\(\scriptstyle P\) (example: ANe0)

	Atomic <j0> orbital population for orbital, \(\scriptstyle P\); where \(\scriptstyle P\) is one of the characters 0 or 1.

	AD\(\scriptstyle O_0\),\(\scriptstyle O_1\)\(\scriptstyle O_0\) (example: AD0,00)

	Atomic sp. harm. coeff for orbital, 1; where \(\scriptstyle O_0\) is one of the characters 0, - or 6 and \(\scriptstyle O_1\) is one of the characters 0, - or 6 and \(\scriptstyle O_0\) is one of the characters 0, - or 6.

	AD\(\scriptstyle O_0\),-\(\scriptstyle O_1\)\(\scriptstyle O_0\) (example: AD0,-00)

	Atomic sp. harm. coeff for orbital, 1; where \(\scriptstyle O_0\) is one of the characters 0, - or 6 and \(\scriptstyle O_1\) is one of the characters 0, - or 6 and \(\scriptstyle O_0\) is one of the characters 0, - or 6.

	Back\(\scriptstyle J\) (example: Back11)

	Background term #\(\scriptstyle J\); where \(\scriptstyle J\) is the background term number.

	BkPkint;\(\scriptstyle J\) (example: BkPkint;11)

	Background peak #\(\scriptstyle J\) intensity; where \(\scriptstyle J\) is the background peak number.

	BkPkpos;\(\scriptstyle J\) (example: BkPkpos;11)

	Background peak #\(\scriptstyle J\) position; where \(\scriptstyle J\) is the background peak number.

	BkPksig;\(\scriptstyle J\) (example: BkPksig;11)

	Background peak #\(\scriptstyle J\) Gaussian width; where \(\scriptstyle J\) is the background peak number.

	BkPkgam;\(\scriptstyle J\) (example: BkPkgam;11)

	Background peak #\(\scriptstyle J\) Cauchy width; where \(\scriptstyle J\) is the background peak number.

	BF mult

	Background file multiplier.

	Bab\(\scriptstyle Q\) (example: BabA)

	Babinet solvent scattering coef. \(\scriptstyle Q\); where \(\scriptstyle Q\) is one of the characters A or U.

	D\(\scriptstyle N_0\)\(\scriptstyle N_1\) (example: D11)

	Anisotropic strain coef. \(\scriptstyle N_0\)\(\scriptstyle N_1\); where \(\scriptstyle N_0\) is one of the characters 1, 2 or 3 and \(\scriptstyle N_1\) is one of the characters 1, 2 or 3.

	Extinction

	Extinction coef.

	MD

	March-Dollase coef.

	Mustrain;\(\scriptstyle J\) (example: Mustrain;11)

	Microstrain coefficient (delta Q/Q x 10**6); where \(\scriptstyle J\) can be i for isotropic or equatorial and a is axial (uniaxial broadening), a number for generalized (Stephens) broadening or mx for the Gaussian/Lorentzian mixing term (LGmix).

	Size;\(\scriptstyle J\) (example: Size;11)

	Crystallite size value (in microns); where \(\scriptstyle J\) can be i for isotropic or equatorial, and a is axial (uniaxial broadening), a number between 0 and 5 for ellipsoidal broadening or mx for the Gaussian/Lorentzian mixing term (LGmix).

	eA

	Cubic mustrain value.

	Ep

	Primary extinction.

	Es

	Secondary type II extinction.

	Eg

	Secondary type I extinction.

	Flack

	Flack parameter.

	TwinFr

	Twin fraction.

	Layer Disp

	Layer displacement along beam.

	Absorption

	Absorption coef.

	LayerDisp

	Bragg-Brentano Layer displacement.

	Displace\(\scriptstyle R\) (example: DisplaceX)

	Debye-Scherrer sample displacement \(\scriptstyle R\); where \(\scriptstyle R\) is one of the characters X or Y.

	Lam

	Wavelength.

	I(L2)\/I(L1)

	Ka2/Ka1 intensity ratio.

	Polariz.

	Polarization correction.

	SH/L

	FCJ peak asymmetry correction.

	\(\scriptstyle S\) (example: U)

	Gaussian instrument broadening \(\scriptstyle S\); where \(\scriptstyle S\) is one of the characters U, V or W.

	\(\scriptstyle T\) (example: X)

	Cauchy instrument broadening \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	Zero

	Debye-Scherrer zero correction.

	Shift

	Bragg-Brentano sample displ.

	SurfRoughA

	Bragg-Brenano surface roughness A.

	SurfRoughB

	Bragg-Brenano surface roughness B.

	Transparency

	Bragg-Brentano sample tranparency.

	DebyeA

	Debye model amplitude.

	DebyeR

	Debye model radius.

	DebyeU

	Debye model Uiso.

	RBV\(\scriptstyle J\) (example: RBV11)

	Vector rigid body parameter.

	RBVO\(\scriptstyle U\) (example: RBVOa)

	Vector rigid body orientation parameter \(\scriptstyle U\); where \(\scriptstyle U\) is one of the characters a, i, j or k.

	RBVP\(\scriptstyle M\) (example: RBVPx)

	Vector rigid body \(\scriptstyle M\) position parameter; where \(\scriptstyle M\) is one of the characters x, y or z.

	RBVf

	Vector rigid body site fraction.

	RBV\(\scriptstyle V_0\)\(\scriptstyle W_0\)\(\scriptstyle W_1\) (example: RBVT11)

	Residue rigid body group disp. param.; where \(\scriptstyle V_0\) is one of the characters T, L or S and \(\scriptstyle W_0\) is one of the characters 1, 2, 3, A or B and \(\scriptstyle W_1\) is one of the characters 1, 2, 3, A or B.

	RBVU

	Residue rigid body group Uiso param.

	RBRO\(\scriptstyle U\) (example: RBROa)

	Residue rigid body orientation parameter \(\scriptstyle U\); where \(\scriptstyle U\) is one of the characters a, i, j or k.

	RBRP\(\scriptstyle M\) (example: RBRPx)

	Residue rigid body \(\scriptstyle M\) position parameter; where \(\scriptstyle M\) is one of the characters x, y or z.

	RBRTr;\(\scriptstyle J\) (example: RBRTr;11)

	Residue rigid body torsion parameter.

	RBRf

	Residue rigid body site fraction.

	RBR\(\scriptstyle V_0\)\(\scriptstyle W_0\)\(\scriptstyle W_1\) (example: RBRT11)

	Residue rigid body group disp. param.; where \(\scriptstyle V_0\) is one of the characters T, L or S and \(\scriptstyle W_0\) is one of the characters 1, 2, 3, A or B and \(\scriptstyle W_1\) is one of the characters 1, 2, 3, A or B.

	RBRU

	Residue rigid body group Uiso param.

	RBSAtNo

	Atom number for spinning rigid body.

	RBSO\(\scriptstyle U\) (example: RBSOa)

	Spinning rigid body orientation parameter \(\scriptstyle U\); where \(\scriptstyle U\) is one of the characters a, i, j or k.

	RBSP\(\scriptstyle M\) (example: RBSPx)

	Spinning rigid body \(\scriptstyle M\) position parameter; where \(\scriptstyle M\) is one of the characters x, y or z.

	RBSShRadius

	Spinning rigid body shell radius.

	RBSShC\(\scriptstyle X\) (example: RBSShC1)

	Spinning rigid body sph. harmonics term; where \(\scriptstyle X\) is one of the characters 1, -, 2 or 0 ,, 1, -, 2 or 0.

	constr\(\scriptstyle G\) (example: constr10)

	Generated degree of freedom from constraint; where \(\scriptstyle G\) is one or more digits (0, 1,… 9).

	nv-(.+)

	New variable assignment with name 1.

	mV\(\scriptstyle H\) (example: mV0)

	Modulation vector component \(\scriptstyle H\); where \(\scriptstyle H\) is the digits 0, 1, or 2.

	Fsin

	Sin site fraction modulation.

	Fcos

	Cos site fraction modulation.

	Fzero

	Crenel function offset.

	Fwid

	Crenel function width.

	Tmin

	ZigZag/Block min location.

	Tmax

	ZigZag/Block max location.

	\(\scriptstyle T\)max (example: Xmax)

	ZigZag/Block max value for \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	\(\scriptstyle T\)sin (example: Xsin)

	Sin position wave for \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	\(\scriptstyle T\)cos (example: Xcos)

	Cos position wave for \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	U\(\scriptstyle N_0\)\(\scriptstyle N_1\)sin (example: U11sin)

	Sin thermal wave for U\(\scriptstyle N_0\)\(\scriptstyle N_1\); where \(\scriptstyle N_0\) is one of the characters 1, 2 or 3 and \(\scriptstyle N_1\) is one of the characters 1, 2 or 3.

	U\(\scriptstyle N_0\)\(\scriptstyle N_1\)cos (example: U11cos)

	Cos thermal wave for U\(\scriptstyle N_0\)\(\scriptstyle N_1\); where \(\scriptstyle N_0\) is one of the characters 1, 2 or 3 and \(\scriptstyle N_1\) is one of the characters 1, 2 or 3.

	M\(\scriptstyle T\)sin (example: MXsin)

	Sin mag. moment wave for \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	M\(\scriptstyle T\)cos (example: MXcos)

	Cos mag. moment wave for \(\scriptstyle T\); where \(\scriptstyle T\) is one of the characters X, Y or Z.

	PDFpos

	PDF peak position.

	PDFmag

	PDF peak magnitude.

	PDFsig

	PDF peak std. dev.

	Aspect ratio

	Particle aspect ratio.

	Length

	Cylinder length.

	Diameter

	Cylinder/disk diameter.

	Thickness

	Disk thickness.

	Shell thickness

	Multiplier to get inner(<1) or outer(>1) sphere radius.

	Dist

	Interparticle distance.

	VolFr

	Dense scatterer volume fraction.

	epis

	Sticky sphere epsilon.

	Sticky

	Stickyness.

	Depth

	Well depth.

	Width

	Well width.

	Volume

	Particle volume.

	Radius

	Sphere/cylinder/disk radius.

	Mean

	Particle mean radius.

	StdDev

	Standard deviation in Mean.

	G

	Guinier prefactor.

	Rg

	Guinier radius of gyration.

	B

	Porod prefactor.

	P

	Porod power.

	Cutoff

	Porod cutoff.

	PkInt

	Bragg peak intensity.

	PkPos

	Bragg peak position.

	PkSig

	Bragg peak sigma.

	PkGam

	Bragg peak gamma.

	e\(\scriptstyle Y_0\)\(\scriptstyle Y_1\) (example: e11)

	strain tensor e\(\scriptstyle Y_0\)\(\scriptstyle Y_1\); where \(\scriptstyle Y_0\) is one of the characters 1 or 2 and \(\scriptstyle Y_1\) is one of the characters 1 or 2.

	Dcalc

	Calc. d-spacing.

	Back

	background parameter.

	pos

	peak position.

	int

	peak intensity.

	WgtFrac

	phase weight fraction.

	alpha

	TOF profile term.

	alpha-\(\scriptstyle P\) (example: alpha-0)

	Pink profile term; where \(\scriptstyle P\) is one of the characters 0 or 1.

	beta-\(\scriptstyle Z\) (example: beta-0)

	TOF/Pink profile term; where \(\scriptstyle Z\) is one of the characters 0, 1 or q.

	sig-\(\scriptstyle a\) (example: sig-0)

	TOF profile term; where \(\scriptstyle a\) is one of the characters 0, 1, 2 or q.

	dif\(\scriptstyle b\) (example: difA)

	TOF to d-space calibration; where \(\scriptstyle b\) is one of the characters A, B or C.

	C\(\scriptstyle G_0\),\(\scriptstyle G_1\) (example: C10,10)

	spherical harmonics preferred orientation coef.; where \(\scriptstyle G_0\) is one or more digits (0, 1,… 9) and \(\scriptstyle G_1\) is one or more digits (0, 1,… 9).

	Pressure

	Pressure level for measurement in MPa.

	Temperature

	T value for measurement, K.

	FreePrm\(\scriptstyle N\) (example: FreePrm1)

	User defined measurement parameter \(\scriptstyle N\); where \(\scriptstyle N\) is one of the characters 1, 2 or 3.

	Gonio. radius

	Distance from sample to detector, mm.

2.3. Constraints Tree Item

Constraints are stored in a dict, separated into groups.
Note that parameter are named in the following pattern,
p:h:<var>:n, where p is the phase number, h is the histogram number
<var> is a variable name and n is the parameter number.
If a parameter does not depend on a histogram or phase or is unnumbered, that
number is omitted.
Note that the contents of each dict item is a List where each element in the
list is a constraint definition objects.
The constraints in this form are converted in
GSASIImapvars.ProcessConstraints() to the form used in GSASIImapvars

The keys in the Constraints dict are:

	key

	explanation

	Hist

	This specifies a list of constraints on
histogram-related parameters,
which will be of form :h:<var>:n.

	HAP

	This specifies a list of constraints on parameters
that are defined for every histogram in each phase
and are of form p:h:<var>:n.

	Phase

	This specifies a list of constraints on phase
parameters,
which will be of form p::<var>:n.

	Global

	This specifies a list of constraints on parameters
that are not tied to a histogram or phase and
are of form ::<var>:n

Each constraint is defined as an item in a list. Each constraint is of form:

[[<mult1>, <var1>], [<mult2>, <var2>],..., <fixedval>, <varyflag>, <constype>]

Where the variable pair list item containing two values [<mult>, <var>], where:

	<mult> is a multiplier for the constraint (float)

	<var> a G2VarObj object. (Note that in very old .gpx files this might be a str with a variable name of form ‘p:h:name[:at]’)

Note that the last three items in the list play a special role:

	<fixedval> is the fixed value for a constant equation (constype=c)
constraint or is None. For a New variable (constype=f) constraint,
a variable name can be specified as a str (used for externally
generated constraints)

	<varyflag> is True or False for New variable (constype=f) constraints
or is None. This indicates if this variable should be refined.

	<constype> is one of four letters, ‘e’, ‘c’, ‘h’, ‘f’ that determines the type of constraint:

	‘e’ defines a set of equivalent variables. Only the first variable is refined (if the
appropriate refine flag is set) and and all other equivalent variables in the list
are generated from that variable, using the appropriate multipliers.

	‘c’ defines a constraint equation of form,
\(m_1 \times var_1 + m_2 \times var_2 + ... = c\)

	‘h’ defines a variable to hold (not vary). Any variable on this list is not varied,
even if its refinement flag is set. Only one [mult,var] pair is allowed in a hold
constraint and the mult value is ignored.
This is of particular value when needing to hold one or more variables where a
single flag controls a set of variables such as, coordinates,
the reciprocal metric tensor or anisotropic displacement parameter.

	‘f’ defines a new variable (function) according to relationship
\(newvar = m_1 \times var_1 + m_2 \times var_2 + ...\)

2.4. Covariance Tree Item

The Covariance tree item has results from the last least-squares run. They
are stored in a dict with these keys:

	key

	sub-key

	explanation

	newCellDict

	

	(dict) ith lattice parameters computed by
GSASIIstrMath.GetNewCellParms()

	title

	

	(str) Name of gpx file(?)

	variables

	

	(list) Values for all N refined variables
(list of float values, length N,
ordered to match varyList)

	sig

	

	(list) Uncertainty values for all N refined variables
(list of float values, length N,
ordered to match varyList)

	varyList

	

	(list of str values, length N) List of directly refined variables

	newAtomDict

	

	(dict) atom position values computed in
GSASIIstrMath.ApplyXYZshifts()

	Rvals

	

	(dict) R-factors, GOF, Marquardt value for last
refinement cycle

	

	Nobs

	(int) Number of observed data points

	

	Rwp

	(float) overall weighted profile R-factor (%)

	

	chisq

	(float) \(\sum w*(I_{obs}-I_{calc})^2\)
for all data.
Note: this is not the reduced \(\chi^2\).

	

	lamMax

	(float) Marquardt value applied to Hessian diagonal

	

	GOF

	(float) The goodness-of-fit, aka square root of
the reduced chi squared.

	covMatrix

	

	(np.array) The (NxN) covVariance matrix

2.5. Phase Tree Items

Phase information is stored in the GSAS-II data tree as children of the
Phases item in a dict with keys:

	key

	sub-key

	explanation

	General

	

	(dict) Overall information for the phase

	

	3Dproj

	(list of str) projections for 3D pole distribution plots

	

	AngleRadii

	(list of floats) Default radius for each atom used to compute
interatomic angles

	

	AtomMass

	(list of floats) Masses for atoms

	

	AtomPtrs

	(list of int) four locations (cx,ct,cs & cu) to use to pull info
from the atom records

	

	AtomTypes

	(llist of str) Atom types

	

	BondRadii

	(list of floats) Default radius for each atom used to compute
interatomic distances

	

	Cell

	Unit cell parameters & ref. flag
(list with 8 items. All but first item are float.)

0: cell refinement flag (True/False),

1-3: a, b, c, (\(\AA\))

4-6: alpha, beta & gamma, (degrees)

7: volume (\(\AA^3\))

	

	Color

	(list of (r,b,g) triplets) Colors for atoms

	

	Compare

	(dict) Polygon comparison parameters

	

	Data plot type

	(str) data plot type (‘Mustrain’, ‘Size’ or
‘Preferred orientation’) for powder data

	

	DisAglCtls

	(dDict) with distance/angle search controls,
which has keys ‘Name’, ‘AtomTypes’,
‘BondRadii’, ‘AngleRadii’ which are as above
except are possibly edited. Also contains
‘Factors’, which is a 2 element list with
a multiplier for bond and angle search range
[typically (0.85,0.85)].

	

	F000X

	(float) x-ray F(000) intensity

	

	F000N

	(float) neutron F(000) intensity

	

	Flip

	(dict) Charge flip controls

	

	HydIds

	(dict) geometrically generated hydrogen atoms

	

	Isotope

	(dict) Isotopes for each atom type

	

	Isotopes

	(dict) Scattering lengths for each isotope
combination for each element in phase

	

	MCSA controls

	(dict) Monte Carlo-Simulated Annealing controls

	

	Map

	(dict) Map parameters

	

	Mass

	(float) Mass of unit cell contents in g/mol

	

	Modulated

	(bool) True if phase modulated

	

	Mydir

	(str) Directory of current .gpx file

	

	Name

	(str) Phase name

	

	NoAtoms

	(dict) Number of atoms per unit cell of each type

	

	POhkl

	(list) March-Dollase preferred orientation direction

	

	Pawley dmin

	(float) maximum Q (as d-space) to use for Pawley extraction

	

	Pawley dmax

	(float) minimum Q (as d-space) to use for Pawley extraction

	

	Pawley neg wt

	(float) Restraint value for negative Pawley intensities

	

	SGData

	(object) Space group details as a
space group (SGData)
object, as defined in GSASIIspc.SpcGroup().

	

	SH Texture

	(dict) Spherical harmonic preferred orientation parameters

	

	Super

	(int) dimension of super group (0,1 only)

	

	Type

	(str) phase type (e.g. ‘nuclear’)

	

	Z

	(dict) Atomic numbers for each atom type

	

	doDysnomia

	(bool) flag for max ent map modification via Dysnomia

	

	doPawley

	(bool) Flag for Pawley intensity extraction

	

	vdWRadii

	(dict) Van der Waals radii for each atom type

	ranId

	

	(int) unique random number Id for phase

	pId

	

	(int) Phase Id number for current project.

	Atoms

	

	(list of lists) Atoms in phase as a list of lists. The outer list
is for each atom, the inner list contains varying
items depending on the type of phase, see
the Atom Records description.

	Drawing

	

	(dict) Display parameters

	

	Atoms

	(list of lists) with an entry for each atom that is drawn

	

	Plane

	(list) Controls for contour density plane display

	

	Quaternion

	(4 element np.array) Viewing quaternion

	

	Zclip

	(float) clipping distance in \(\AA\)

	

	Zstep

	(float) Step to de/increase Z-clip

	

	atomPtrs

	(list) positions of x, type, site sym, ADP flag in Draw Atoms

	

	backColor

	(list) background for plot as and R,G,B triplet
(default = [0, 0, 0], black).

	

	ballScale

	(float) Radius of spheres in ball-and-stick display

	

	bondList

	(dict) Bonds

	

	bondRadius

	(float) Radius of binds in \(\AA\)

	

	cameraPos

	(float) Viewing position in \(\AA\) for plot

	

	contourLevel

	(float) map contour level in \(e/\AA^3\)

	

	contourMax

	(float) map contour maximum

	

	depthFog

	(bool) True if use depthFog on plot - set currently as False

	

	ellipseProb

	(float) Probability limit for display of thermal
ellipsoids in % .

	

	magMult

	(float) multiplier for magnetic moment arrows

	

	mapSize

	(float) x & y dimensions of contourmap (fixed internally)

	

	modelView

	(4,4 array) from openGL drawing transofmation matrix

	

	oldxy

	(list with two floats) previous view point

	

	radiusFactor

	(float) Distance ratio for searching for bonds. Bonds
are located that are within r(Ra+Rb) and (Ra+Rb)/r
where Ra and Rb are the atomic radii.

	

	selectedAtoms

	(list of int values) List of selected atoms

	

	showABC

	(bool) Flag to show view point triplet. True=show.

	

	showHydrogen

	(bool) Flag to control plotting of H atoms.

	

	showRigidBodies

	(bool) Flag to highlight rigid body placement

	

	showSlice

	(bool) flag to show contour map

	

	sizeH

	(float) Size ratio for H atoms

	

	unitCellBox

	(bool) Flag to control display of the unit cell.

	

	vdwScale

	(float) Multiplier of van der Waals radius for display of vdW spheres.

	

	viewDir

	(np.array with three floats) cartesian viewing direction

	

	viewPoint

	(list of lists) First item in list is [x,y,z]
in fractional coordinates for the center of
the plot. Second item list of previous & current
atom number viewed (may be [0,0])

	ISODISTORT

	

	(dict) contains controls for running ISODISTORT and results from it

	

	ISOmethod

	(int) ISODISTORT method (currently 1 or 4; 2 & 3 not implemented in GSAS-II)

	

	ParentCIF

	(str) parent cif file name for ISODISTORT method 4

	

	ChildCIF

	(str) child cif file name for ISODISTORT method 4

	

	SGselect

	(dict) selection list for lattice types in radio result from ISODISTORT method 1

	

	selection

	(int) chosen selection from radio

	

	radio

	(list) results from ISODISTORT method 1

	

	ChildMatrix

	(3x3 array) transformation matrix for method 3 (not currently used)

	

	ChildSprGp

	(str) child space group for method 3 (not currently used)

	

	ChildCell

	(str) cell ordering for nonstandard orthorhombic ChildSprGrp in method 3 (not currently used)

	

	G2ModeList

	(list) ISODISTORT mode names

	

	modeDispl

	(list) distortion mode values; refinable parameters

	

	ISOmodeDispl

	(list) distortion mode values as determined in method 4 by ISODISTORT

	

	NormList

	(list) ISODISTORT normalization values; to convert mode value to fractional coordinate dsplacement

	

	G2parentCoords

	(list) full set of parent structure coordinates transformed to child structure; starting basis for mode displacements

	

	G2VarList

	(list)

	

	IsoVarList

	(list)

	

	G2coordOffset

	(list) only adjustible set of parent structure coordinates

	

	G2OccVarList

	(list)

	

	Var2ModeMatrix

	(array) atom variable to distortion mode transformation

	

	Mode2VarMatrix

	(array) distortion mode to atom variable transformation

	

	rundata

	(dict) saved input information for use by ISODISTORT method 1

	RBModels

	

	Rigid body assignments (note Rigid body definitions
are stored in their own main top-level tree entry.)

	RMC

	

	(dict) RMCProfile, PDFfit & fullrmc controls

	Pawley ref

	

	(list) Pawley reflections

	Histograms

	

	(dict of dicts) The key for the outer dict is
the histograms tied to this phase. The inner
dict contains the combined phase/histogram
parameters for items such as scale factors,
size and strain parameters. The following are the
keys to the inner dict. (dict)

	

	Babinet

	(dict) For protein crystallography. Dictionary with two
entries, ‘BabA’, ‘BabU’

	

	Extinction

	(list of float, bool) Extinction parameter

	

	Flack

	(list of [float, bool]) Flack parameter & refine flag

	

	HStrain

	(list of two lists) Hydrostatic strain. The first is
a list of the HStrain parameters (1, 2, 3, 4, or 6
depending on unit cell), the second is a list of boolean
refinement parameters (same length)

	

	Histogram

	(str) The name of the associated histogram

	

	Layer Disp

	(list of [float, bool]) Layer displacement in beam direction & refine flag

	

	LeBail

	(bool) Flag for LeBail extraction

	

	Mustrain

	(list) Microstrain parameters, in order:

	Type, one of u’isotropic’, u’uniaxial’, u’generalized’

	Isotropic/uniaxial parameters - list of 3 floats

	Refinement flags - list of 3 bools

	Microstrain axis - list of 3 ints, [h, k, l]

	Generalized mustrain parameters - list of 2-6 floats, depending on space group

	Generalized refinement flags - list of bools, corresponding to the parameters of (4)

	

	Pref.Ori.

	(list) Preferred Orientation. List of eight parameters.
Items marked SH are only used for Spherical Harmonics.

	(str) Type, ‘MD’ for March-Dollase or ‘SH’ for Spherical Harmonics

	(float) Value

	(bool) Refinement flag

	(list) Preferred direction, list of ints, [h, k, l]

	(int) SH - number of terms

	(dict) SH -

	(list) SH

	(float) SH

	

	Scale

	(list of [float, bool]) Phase fraction & refine flag

	

	Size

	List of crystallite size parameters, in order:

	(str) Type, one of u’isotropic’, u’uniaxial’, u’ellipsoidal’

	(list) Isotropic/uniaxial parameters - list of 3 floats

	(list) Refinement flags - list of 3 bools

	(list) Size axis - list of 3 ints, [h, k, l]

	(list) Ellipsoidal size parameters - list of 6 floats

	(list) Ellipsoidal refinement flags - list of bools, corresponding to the parameters of (4)

	

	Use

	(bool) True if this histogram is to be used in refinement

	MCSA

	

	(dict) Monte-Carlo simulated annealing parameters

2.6. Rigid Body Objects

Rigid body descriptions are available for two types of rigid bodies: ‘Vector’
and ‘Residue’. Vector rigid bodies are developed by a sequence of translations each
with a refinable magnitude and Residue rigid bodies are described as Cartesian coordinates
with defined refinable torsion angles.

	key

	sub-key

	explanation

	Vector

	RBId

	(dict of dict) vector rigid bodies

	

	AtInfo

	(dict) Drad, Color: atom drawing radius & color for each atom type

	

	RBname

	(str) Name assigned by user to rigid body

	

	VectMag

	(list) vector magnitudes in \(\AA\)

	

	rbXYZ

	(list of 3 float Cartesian coordinates for Vector rigid body)

	

	rbRef

	(list of 3 int & 1 bool) 3 assigned reference atom nos. in rigid body for origin
definition, use center of atoms flag

	

	VectRef

	(list of bool refinement flags for VectMag values)

	

	rbTypes

	(list of str) Atom types for each atom in rigid body

	

	rbVect

	(list of lists) Cartesian vectors for each translation used to build rigid body

	

	useCount

	(int) Number of times rigid body is used in any structure

	Residue

	RBId

	(dict of dict) residue rigid bodies

	

	AtInfo

	(dict) Drad, Color: atom drawing radius & color for each atom type

	

	RBname

	(str) Name assigned by user to rigid body

	

	rbXYZ

	(list of 3 float) Cartesian coordinates for Residue rigid body

	

	rbTypes

	(list of str) Atom types for each atom in rigid body

	

	atNames

	(list of str) Names of each atom in rigid body (e.g. C1,N2…)

	

	rbRef

	(list of 3 int & 1 bool) 3 assigned reference atom nos. in rigid body for origin
definition, use center of atoms flag

	

	rbSeq

	(list) Orig,Piv,angle,Riding : definition of internal rigid body
torsion; origin atom (int), pivot atom (int), torsion angle (float),
riding atoms (list of int)

	

	SelSeq

	(int,int) used by SeqSizer to identify objects

	

	useCount

	(int)Number of times rigid body is used in any structure

	RBIds

	

	(dict) unique Ids generated upon creation of each rigid body

	

	Vector

	(list) Ids for each Vector rigid body

	

	Residue

	(list) Ids for each Residue rigid body

2.7. Space Group Objects

Space groups are interpreted by GSASIIspc.SpcGroup()
and the information is placed in a SGdata object
which is a dict with these keys. Magnetic ones are marked “mag”

	key

	explanation

	BNSlattsym

	mag - (str) BNS magnetic space group symbol and centering vector

	GenFlg

	mag - (list) symmetry generators indices

	GenSym

	mag - (list) names for each generator

	MagMom

	mag - (list) “time reversals” for each magnetic operator

	MagPtGp

	mag - (str) Magnetic point group symbol

	MagSpGrp

	mag - (str) Magnetic space group symbol

	OprNames

	mag - (list) names for each space group operation

	SGCen

	(np.array) Symmetry cell centering vectors. A (n,3) np.array
of centers. Will always have at least one row: np.array([[0, 0, 0]])

	SGFixed

	(bool) Only True if phase mported from a magnetic cif file
then the space group can not be changed by the user because
operator set from cif may be nonstandard

	SGGen

	(list) generators

	SGGray

	(bool) True if space group is a gray group (incommensurate magnetic structures)

	SGInv

	(bool) True if centrosymmetric, False if not

	SGLatt

	(str)Lattice centering type. Will be one of
P, A, B, C, I, F, R

	SGLaue

	(str) one of the following 14 Laue classes:
-1, 2/m, mmm, 4/m, 4/mmm, 3R,
3mR, 3, 3m1, 31m, 6/m, 6/mmm, m3, m3m

	SGOps

	(list) symmetry operations as a list of form
[[M1,T1], [M2,T2],...]
where \(M_n\) is a 3x3 np.array
and \(T_n\) is a length 3 np.array.
Atom coordinates are transformed where the
Asymmetric unit coordinates [X is (x,y,z)]
are transformed using
\(X^\prime = M_n*X+T_n\)

	SGPolax

	(str) Axes for space group polarity. Will be one of
‘’, ‘x’, ‘y’, ‘x y’, ‘z’, ‘x z’, ‘y z’,
‘xyz’. In the case where axes are arbitrary
‘111’ is used (P 1, and ?).

	SGPtGrp

	(str) Point group of the space group

	SGUniq

	unique axis if monoclinic. Will be
a, b, or c for monoclinic space groups.
Will be blank for non-monoclinic.

	SGSpin

	mag - (list) of spin flip operatiors (+1 or -1) for the space group operations

	SGSys

	(str) symmetry unit cell: type one of
‘triclinic’, ‘monoclinic’, ‘orthorhombic’,
‘tetragonal’, ‘rhombohedral’, ‘trigonal’,
‘hexagonal’, ‘cubic’

	SSGK1

	(list) Superspace multipliers

	SpGrp

	(str) space group symbol

	SpnFlp

	mag - (list) Magnetic spin flips for every magnetic space group operator

Superspace groups [3+1] are interpreted by GSASIIspc.SSpcGroup()
and the information is placed in a SSGdata object
which is a dict with these keys:

	key

	explanation

	SSGCen

	(list) 4D cell centering vectors [0,0,0,0] at least

	SSGK1

	(list) Superspace multipliers

	SSGOps

	(list) 4D symmetry operations as [M,T] so that M*x+T = x’

	SSpGrp

	(str) superspace group symbol extension to space group
symbol, accidental spaces removed

	modQ

	(list) modulation/propagation vector

	modSymb

	(list of str) Modulation symbols

2.8. Phase Information

Phase information is placed in one of the following keys:

	key

	explanation

	General

	Overall information about a phase

	Histograms

	Information about each histogram linked to the
current phase as well as parameters that
are defined for each histogram and phase
(such as sample peak widths and preferred
orientation parameters.

	Atoms

	Contains a list of atoms, as described in the
Atom Records description.

	Drawing

	Parameters that determine how the phase is
displayed, including a list of atoms to be
included, as described in the
Drawing Atom Records
description

	MCSA

	Monte-Carlo simulated annealing parameters

	pId

	The index of each phase in the project, numbered
starting at 0

	ranId

	An int value with a unique value for each phase

	RBModels

	A list of dicts with parameters for each
rigid body inserted into the current phase,
as defined in the
Rigid Body Insertions.
Note that the rigid bodies are defined as
Rigid Body Objects

	RMC

	PDF modeling parameters

	Pawley ref

	Pawley refinement parameters

2.8.1. Atom Records

If phasedict points to the phase information in the data tree, then
atoms are contained in a list of atom records (list) in
phasedict['Atoms']. Also needed to read atom information
are four pointers, cx,ct,cs,cia = phasedict['General']['AtomPtrs'],
which define locations in the atom record, as shown below. Items shown are
always present; additional ones for macromolecular phases are marked ‘mm’,
and those for magnetic structures are marked ‘mg’

	location

	explanation

	ct-4

	mm - (str) residue number

	ct-3

	mm - (str) residue name (e.g. ALA)

	ct-2

	mm - (str) chain label

	ct-1

	(str) atom label

	ct

	(str) atom type

	ct+1

	(str) refinement flags; combination of ‘F’, ‘X’, ‘U’, ‘M’

	cx,cx+1,cx+2

	(3 floats) the x,y and z coordinates

	cx+3

	(float) site occupancy

	cx+4,cx+5,cx+6

	mg - (list) atom magnetic moment along a,b,c in Bohr magnetons

	cs

	(str) site symmetry

	cs+1

	(int) site multiplicity

	cia

	(str) ADP flag: Isotropic (‘I’) or Anisotropic (‘A’)

	cia+1

	(float) Uiso

	cia+2…cia+7

	(6 floats) U11, U22, U33, U12, U13, U23

	atom[cia+8]

	(int) unique atom identifier

2.8.2. Drawing Atom Records

If phasedict points to the phase information in the data tree, then
drawing atoms are contained in a list of drawing atom records (list) in
phasedict['Drawing']['Atoms']. Also needed to read atom information
are four pointers, cx,ct,cs,ci = phasedict['Drawing']['AtomPtrs'],
which define locations in the atom record, as shown below. Items shown are
always present; additional ones for macromolecular phases are marked ‘mm’,
and those for magnetic structures are marked ‘mg’

	location

	explanation

	ct-4

	mm - (str) residue number

	ct-3

	mm - (str) residue name (e.g. ALA)

	ct-2

	mm - (str) chain label

	ct-1

	(str) atom label

	ct

	(str) atom type

	cx,cx+1,cx+2

	(3 floats) the x,y and z coordinates

	cx+3,cx+4,cx+5

	mg - (3 floats) atom magnetic moment along a,b,c in Bohr magnetons

	cs-1

	(str) Sym Op symbol; sym. op number + unit cell id (e.g. ‘1,0,-1’)

	cs

	(str) atom drawing style; e.g. ‘balls & sticks’

	cs+1

	(str) atom label style (e.g. ‘name’)

	cs+2

	(int) atom color (RBG triplet)

	cs+3

	(str) ADP flag: Isotropic (‘I’) or Anisotropic (‘A’)

	cs+4

	(float) Uiso

	cs+5…cs+11

	(6 floats) U11, U22, U33, U12, U13, U23

	ci

	(int) unique atom identifier; matches source atom Id in Atom Records

2.8.3. Rigid Body Insertions

If phasedict points to the phase information in the data tree, then
rigid body information is contained in list(s) in
phasedict['RBModels']['Residue'] and/or phasedict['RBModels']['Vector']
for each rigid body inserted into the current phase.

	key

	explanation

	fixOrig

	Should the origin be fixed (when editing, not the refinement flag)

	Ids

	Ids for assignment of atoms in the rigid body

	numChain

	Chain number for macromolecular fits

	Orient

	Orientation of the RB as a quaternion and a refinement flag (’ ‘, ‘A’ or ‘AV’)

	OrientVec

	Orientation of the RB expressed as a vector and azimuthal rotation angle

	Orig

	Origin of the RB in fractional coordinates and refinement flag (bool)

	RBId

	References the unique ID of a rigid body in the
Rigid Body Objects

	RBname

	The name for the rigid body (str)

	AtomFrac

	The atom fractions for the rigid body

	ThermalMotion

	The thermal motion description for the rigid body, which includes a choice for
the model and can include TLS parameters or an overall Uiso value.

	Torsions

	Defines the torsion angle and refinement flag for each torsion defined in
the Rigid Body Object

2.9. Powder Diffraction Tree Items

Every powder diffraction histogram is stored in the GSAS-II data tree
with a top-level entry named beginning with the string “PWDR “. The
diffraction data for that information are directly associated with
that tree item and there are a series of children to that item. The
routines GSASIIdataGUI.GSASII.GetUsedHistogramsAndPhasesfromTree()
and GSASIIstrIO.GetUsedHistogramsAndPhases() will
load this information into a dictionary where the child tree name is
used as a key, and the information in the main entry is assigned
a key of Data, as outlined below.

	key

	sub-key

	explanation

	Comments

	

	(list of str) Text strings extracted from the original powder
data header. These cannot be changed by the user;
it may be empty.

	Limits

	

	(list) two two element lists, as [[Ld,Hd],[L,H]]
where L and Ld are the current and default lowest
two-theta value to be used and
where H and Hd are the current and default highest
two-theta value to be used.

	Reflection Lists

	

	(dict of dicts) with an entry for each phase in the
histogram. The contents of each dict item
is a dict containing reflections, as described in
the Powder Reflections
description.

	Instrument Parameters

	

	(dict) The instrument parameters uses different dicts
for the constant wavelength (CW) and time-of-flight (TOF)
cases. See below for the descriptions of each.

	wtFactor

	

	(float) A weighting factor to increase or decrease
the leverage of data in the histogram .
A value of 1.0 weights the data with their
standard uncertainties and a larger value
increases the weighting of the data (equivalent
to decreasing the uncertainties).

	Sample Parameters

	

	(dict) Parameters that describe how
the data were collected, as listed
below. Refinable parameters are a list containing
a float and a bool, where the second value
specifies if the value is refined, otherwise
the value is a float unless otherwise noted.

	

	Scale

	The histogram scale factor (refinable)

	

	Absorption

	The sample absorption coefficient as
\(\mu r\) where r is the radius
(refinable). Only valid for Debye-Scherrer geometry.

	

	SurfaceRoughA

	Surface roughness parameter A as defined by
Surotti, J. Appl. Cryst, 5, 325-331, 1972.
(refinable - only valid for Bragg-Brentano geometry)

	

	SurfaceRoughB

	Surface roughness parameter B (refinable -
only valid for Bragg-Brentano geometry)

	

	DisplaceX,
DisplaceY

	Sample displacement from goniometer center
where Y is along the beam direction and
X is perpendicular. Units are \(\mu m\)
(refinable).

	

	Phi, Chi,
Omega

	Goniometer sample setting angles, in degrees.

	

	Gonio. radius

	Radius of the diffractometer in mm

	

	InstrName

	(str) A name for the instrument, used in preparing
a CIF .

	

	Force,
Temperature,
Humidity,
Pressure,
Voltage

	Variables that describe how the measurement
was performed. Not used directly in
any computations.

	

	ranId

	(int) The random-number Id for the histogram
(same value as where top-level key is ranId)

	

	Type

	(str) Type of diffraction data, may be ‘Debye-Scherrer’
or ‘Bragg-Brentano’ .

	hId

	

	(int) The number assigned to the histogram when
the project is loaded or edited (can change)

	ranId

	

	(int) A random number id for the histogram
that does not change

	Background

	

	(list) The background is stored as a list with where
the first item in the list is list and the second
item is a dict. The list contains the background
function and its coefficients; the dict contains
Debye diffuse terms and background peaks.
(TODO: this needs to be expanded.)

	Data

	

	(list) The data consist of a list of 6 np.arrays
containing in order:

	the x-postions (two-theta in degrees),

	the intensity values (Yobs),

	the weights for each Yobs value

	the computed intensity values (Ycalc)

	the background values

	Yobs-Ycalc

2.9.1. CW Instrument Parameters

Instrument Parameters are placed in a list of two dicts,
where the keys in the first dict are listed below. Note that the dict contents are different for
constant wavelength (CW) vs. time-of-flight (TOF) histograms.
The value for each item is a list containing three values: the initial value, the current value
and a refinement flag which can have a value of True, False or 0 where 0 indicates a value that
cannot be refined. The first and second values are floats unless otherwise noted.
Items not refined are noted as [*]

	key

	sub-key

	explanation

	Instrument Parameters[0]

	Type [*]

	(str) Histogram type:
* ‘PXC’ for constant wavelength x-ray
* ‘PNC’ for constant wavelength neutron

	

	Bank [*]

	(int) Data set number in a multidata file (usually 1)

	

	Lam

	(float) Specifies a wavelength in \(\AA\)

	

	Lam1 [*]

	(float) Specifies the primary wavelength in
\(\AA\), used in place of Lam
when an \(\alpha_1, \alpha_2\)
source is used.

	

	Lam2 [*]

	(float) Specifies the secondary wavelength in
\(\AA\), used with Lam1

	

	I(L2)/I(L1)

	(float) Ratio of Lam2 to Lam1, used with Lam1

	

	Zero

	(float) Two-theta zero correction in degrees

	

	Azimuth [*]

	(float) Azimuthal setting angle for data recorded with differing setting angles

	

	U, V, W

	(float) Cagliotti profile coefficients
for Gaussian instrumental broadening, where the
FWHM goes as
\(U \tan^2\theta + V \tan\theta + W\)

	

	X, Y, Z

	(float) Cauchy (Lorentzian) instrumental broadening coefficients

	

	SH/L

	(float) Variant of the Finger-Cox-Jephcoat asymmetric
peak broadening ratio. Note that this is the
sum of S/L and H/L where S is
sample height, H is the slit height and
L is the goniometer diameter.

	

	Polariz.

	(float) Polarization coefficient.

	Instrument Parameters[1]

	
	(empty dict)

2.9.2. TOF Instrument Parameters

Instrument Parameters are also placed in a list of two dicts,
where the keys in each dict listed below, but here for
time-of-flight (TOF) histograms.
The value for each item is a list containing three values: the initial value, the current value
and a refinement flag which can have a value of True, False or 0 where 0 indicates a value that
cannot be refined. The first and second values are floats unless otherwise noted.
Items not refined are noted as [*]

	key

	sub-key

	explanation

	Instrument Parameters[0]

	Type [*]

	(str) Histogram type:
* ‘PNT’ for time of flight neutron

	

	Bank

	(int) Data set number in a multidata file

	

	2-theta [*]

	(float) Nominal scattering angle for the detector

	

	fltPath [*]

	(float) Total flight path source-sample-detector

	

	Azimuth [*]

	(float) Azimuth angle for detector right hand rotation
from horizontal away from source

	

	difC,difA,
difB

	(float) Diffractometer constants for conversion of d-spacing to TOF
in microseconds

	

	Zero

	(float) Zero point offset (microseconds)

	

	alpha

	(float) Exponential rise profile coefficients

	

	beta-0
beta-1
beta-q

	(float) Exponential decay profile coefficients

	

	sig-0
sig-1
sig-2
sig-q

	(float) Gaussian profile coefficients

	

	X,Y,Z

	(float) Lorentzian profile coefficients

	Instrument Parameters[1]

	Pdabc

	(list of 4 float lists) Originally created for use in gsas as optional tables
of d, alp, bet, d-true; for a reflection alpha & beta are obtained via interpolation
from the d-spacing and these tables. The d-true column is apparently unused.

2.10. Powder Reflection Data Structure

For every phase in a histogram, the Reflection Lists value is a dict
one element of which is ‘RefList’, which is a np.array containing
reflections. The columns in that array are documented below.

	index

	explanation

	0,1,2

	h,k,l (float)

	3

	(int) multiplicity

	4

	(float) d-space, \(\AA\)

	5

	(float) pos, two-theta

	6

	(float) sig, Gaussian width

	7

	(float) gam, Lorenzian width

	8

	(float) \(F_{obs}^2\)

	9

	(float) \(F_{calc}^2\)

	10

	(float) reflection phase, in degrees

	11

	(float) intensity correction for reflection, this times
\(F_{obs}^2\) or \(F_{calc}^2\) gives Iobs or Icalc

	12

	(float) Preferred orientation correction

	13

	(float) Transmission (absorption correction)

	14

	(float) Extinction correction

2.11. Single Crystal Tree Items

Every single crystal diffraction histogram is stored in the GSAS-II data tree
with a top-level entry named beginning with the string “HKLF “. The
diffraction data for that information are directly associated with
that tree item and there are a series of children to that item. The
routines GSASIIdataGUI.GSASII.GetUsedHistogramsAndPhasesfromTree()
and GSASIIstrIO.GetUsedHistogramsAndPhases() will
load this information into a dictionary where the child tree name is
used as a key, and the information in the main entry is assigned
a key of Data, as outlined below.

	key

	sub-key

	explanation

	Data

	

	(dict) that contains the
reflection table,
as described in the
Single Crystal Reflections
description.

	Instrument Parameters

	

	(list) containing two dicts where the possible
keys in each dict are listed below. The value
for most items is a list containing two values:
the initial value, the current value.
The first and second
values are floats unless otherwise noted.

	

	Lam

	(two floats) Specifies a wavelength in \(\AA\)

	

	Type

	(two str values) Histogram type :
* ‘SXC’ for constant wavelength x-ray
* ‘SNC’ for constant wavelength neutron
* ‘SNT’ for time of flight neutron
* ‘SEC’ for constant wavelength electrons (e.g. micro-ED)

	

	InstrName

	(str) A name for the instrument, used in preparing a CIF

	wtFactor

	

	(float) A weighting factor to increase or decrease
the leverage of data in the histogram.
A value of 1.0 weights the data with their
standard uncertainties and a larger value
increases the weighting of the data (equivalent
to decreasing the uncertainties).

	hId

	

	(int) The number assigned to the histogram when
the project is loaded or edited (can change)

	ranId

	

	(int) A random number id for the histogram
that does not change

2.12. Single Crystal Reflection Data Structure

For every single crystal a histogram, the 'Data' item contains
the structure factors as an np.array in item ‘RefList’.
The columns in that array are documented below for
non-superspace phases.

	index

	3+1 index

	explanation

	0,1,2

	0,1,2

	reflection indices, h,k,l

	

	3

	3+1 superspace index, m

	3

	4

	flag (0 absent, 1 observed)

	4

	5

	d-space, \(\AA\)

	5

	6

	\(F_{obs}^2\)

	6

	7

	\(\sigma(F_{obs}^2)\)

	7

	8

	\(F_{calc}^2\)

	8

	9

	\(F_{obs}^2(T)\)

	9

	10

	\(F_{calc}^2(T)\)

	10

	11

	reflection phase, in degrees

	11

	12

	intensity correction for reflection, this times
\(F_{obs}^2\) or \(F_{calc}^2\)
gives Iobs or Icalc

Notes:

	The annotation “(T)” in the second set of \(F^2(T)\) values
stands for “true,” where the values are on an absolute scale
through application of the scale factor.

	The left-most column gives the entry index for three dimensional
spacegroups, the column to the right of that has the index for
3+1 superspace phases, where there are four reflection indices
h, k, l, m.

2.13. Image Data Structure

Every 2-dimensional image is stored in the GSAS-II data tree
with a top-level entry named beginning with the string “IMG “. The
image data are directly associated with that tree item and there
are a series of children to that item. The routines GSASIIdataGUI.GSASII.GetUsedHistogramsAndPhasesfromTree()
and GSASIIstrIO.GetUsedHistogramsAndPhases() will
load this information into a dictionary where the child tree name is
used as a key, and the information in the main entry is assigned
a key of Data, as outlined below.

	key

	sub-key

	explanation

	Comments

	

	(list of str) Text strings extracted from the original image data
header or a metafile. These cannot be changed by
the user; it may be empty.

	Image Controls

	azmthOff

	(float) The offset to be applied to an azimuthal
value. Accomodates
detector orientations other than with the detector
X-axis
horizontal.

	

	background image

	(list:str,float) The name of a tree item (“IMG …”) that is to be subtracted
during image integration multiplied by value. It must have the same size/shape as
the integrated image. NB: value < 0 for subtraction.

	

	calibrant

	(str) The material used for determining the position/orientation
of the image. The data is obtained from ImageCalibrants()
and UserCalibrants.py (supplied by user).

	

	calibdmin

	(float) The minimum d-spacing used during the last calibration run.

	

	calibskip

	(int) The number of expected diffraction lines skipped during the last
calibration run.

	

	center

	(list:floats) The [X,Y] point in detector coordinates (mm) where the direct beam
strikes the detector plane as determined by calibration. This point
does not have to be within the limits of the detector boundaries.

	

	centerAzm

	(bool) If True then the azimuth reported for the integrated slice
of the image is at the center line otherwise it is at the leading edge.

	

	color

	(str) The name of the colormap used to display the image. Default = ‘Paired’.

	

	cutoff

	(float) The minimum value of I/Ib for a point selected in a diffraction ring for
calibration calculations. See pixLimit for details as how point is found.

	

	DetDepth

	(float) Coefficient for penetration correction to distance; accounts for diffraction
ring offset at higher angles. Optionally determined by calibration.

	

	DetDepthRef

	(bool) If True then refine DetDepth during calibration/recalibration calculation.

	

	distance

	(float) The distance (mm) from sample to detector plane.

	

	ellipses

	(list:lists) Each object in ellipses is a list [center,phi,radii,color] where
center (list) is location (mm) of the ellipse center on the detector plane, phi is the
rotation of the ellipse minor axis from the x-axis, and radii are the minor & major
radii of the ellipse. If radii[0] is negative then parameters describe a hyperbola. Color
is the selected drawing color (one of ‘b’, ‘g’ ,’r’) for the ellipse/hyperbola.

	

	edgemin

	(float) Not used; parameter in EdgeFinder code.

	

	fullIntegrate

	(bool) If True then integrate over full 360 deg azimuthal range.

	

	GonioAngles

	(list:floats) The ‘Omega’,’Chi’,’Phi’ goniometer angles used for this image.
Required for texture calculations.

	

	invert_x

	(bool) If True display the image with the x-axis inverted.

	

	invert_y

	(bool) If True display the image with the y-axis inverted.

	

	IOtth

	(list:floats) The minimum and maximum 2-theta values to be used for integration.

	

	LRazimuth

	(list:floats) The minimum and maximum azimuth values to be used for integration.

	

	Oblique

	(list:float,bool) If True apply a detector absorption correction using the value to the
intensities obtained during integration.

	

	outAzimuths

	(int) The number of azimuth pie slices.

	

	outChannels

	(int) The number of 2-theta steps.

	

	pixelSize

	(list:ints) The X,Y dimensions (microns) of each pixel.

	

	pixLimit

	(int) A box in the image with 2*pixLimit+1 edges is searched to find the maximum.
This value (I) along with the minimum (Ib) in the box is reported by GSASIIimage.ImageLocalMax()
and subject to cutoff in GSASIIimage.makeRing().
Locations are used to construct rings of points for calibration calcualtions.

	

	PolaVal

	(list:float,bool) If type=’SASD’ and if True, apply polarization correction to intensities from
integration using value.

	

	rings

	(list:lists) Each entry is [X,Y,dsp] where X & Y are lists of x,y coordinates around a
diffraction ring with the same d-spacing (dsp)

	

	ring

	(list) The x,y coordinates of the >5 points on an inner ring
selected by the user,

	

	Range

	(list) The minimum & maximum values of the image

	

	rotation

	(float) The angle between the x-axis and the vector about which the
detector is tilted. Constrained to -180 to 180 deg.

	

	SampleShape

	(str) Currently only ‘Cylinder’. Sample shape for Debye-Scherrer experiments; used for absorption
calculations.

	

	SampleAbs

	(list: float,bool) Value of absorption coefficient for Debye-Scherrer experimnents, flag if True
to cause correction to be applied.

	

	setDefault

	(bool) If True the use the image controls values for all new images to be read. (might be removed)

	

	setRings

	(bool) If True then display all the selected x,y ring positions (vida supra rings) used in the calibration.

	

	showLines

	(bool) If True then isplay the integration limits to be used.

	

	size

	(list:int) The number of pixels on the image x & y axes

	

	type

	(str) One of ‘PWDR’, ‘SASD’ or ‘REFL’ for powder, small angle or reflectometry data, respectively.

	

	tilt

	(float) The angle the detector normal makes with the incident beam; range -90 to 90.

	

	wavelength

	(float) The radiation wavelength (\(\AA\)) as entered by the user
(or someday obtained from the image header).

	Masks

	Arcs

	(list: lists) Each entry [2-theta,[azimuth[0],azimuth[1]],thickness] describes an arc mask
to be excluded from integration

	

	Frames

	(list:lists) Each entry describes the x,y points (3 or more - mm) that describe a frame outside
of which is excluded from recalibration and integration. Only one frame is allowed.

	

	Points

	(list:lists) Each entry [x,y,radius] (mm) describes an excluded spot on the image to be excluded
from integration.

	

	Polygons

	(list:lists) Each entry is a list of 3+ [x,y] points (mm) that describe a polygon on the image
to be excluded from integration.

	

	Rings

	(list: lists) Each entry [2-theta,thickness] describes a ring mask
to be excluded from integration.

	

	Thresholds

	(list:[tuple,list]) [(Imin,Imax),[Imin,Imax]] This gives lower and upper limits for points on the image to be included
in integrsation. The tuple is the image intensity limits and the list are those set by the user.

	

	SpotMask

	(dict: int & array)
‘esdMul’(int) number of standard deviations above mean ring intensity to mask
‘spotMask’ (bool array) the spot mask for every pixel in image

	Stress/Strain

	Sample phi

	(float) Sample rotation about vertical axis.

	

	Sample z

	(float) Sample translation from the calibration sample position (for Sample phi = 0)
These will be restricted by space group symmetry; result of strain fit refinement.

	

	Type

	(str) ‘True’ or ‘Conventional’: The strain model used for the calculation.

	

	d-zero

	(list:dict) Each item is for a diffraction ring on the image; all items are from the same phase
and are used to determine the strain tensor.
The dictionary items are:
‘Dset’: (float) True d-spacing for the diffraction ring; entered by the user.
‘Dcalc’: (float) Average calculated d-spacing determined from strain coeff.
‘Emat’: (list: float) The strain tensor elements e11, e12 & e22 (e21=e12, rest are 0)
‘Esig’: (list: float) Esds for Emat from fitting.
‘pixLimit’: (int) Search range to find highest point on ring for each data point
‘cutoff’: (float) I/Ib cutoff for searching.
‘ImxyObs’: (list: lists) [[X],[Y]] observed points to be used for strain calculations.
‘ImtaObs’: (list: lists) [[d],[azm]] transformed via detector calibration from ImxyObs.
‘ImtaCalc’: (list: lists [[d],[azm]] calculated d-spacing & azimuth from fit.

2.14. Parameter Dictionary

The parameter dictionary contains all of the variable parameters for the refinement.
The dictionary keys are the name of the parameter (<phase>:<hist>:<name>:<atom>).
It is prepared in two ways. When loaded from the tree
(in GSASIIdataGUI.GSASII.MakeLSParmDict() and
GSASIIIO.ExportBaseclass.loadParmDict()),
the values are lists with two elements: [value, refine flag]

When loaded from the GPX file (in
GSASIIstrMain.Refine() and GSASIIstrMain.SeqRefine()), the value in the
dict is the actual parameter value (usually a float, but sometimes a
letter or string flag value (such as I or A for iso/anisotropic).

2.15. Texture implementation

There are two different places where texture can be treated in GSAS-II.
One is for mitigating the effects of texture in a structural refinement.
The other is for texture characterization.

For reducing the effect of texture in a structural refinement
there are entries labeled preferred orientation in each phase’s
data tab. Two different approaches can be used for this, the March-Dollase
model and spherical harmonics.

For the March-Dollase model, one axis in reciprocal space is designated as
unique (defaulting to the 001 axis) and reflections are corrected
according to the angle they make with this axis depending on
the March-Dollase ratio. (If unity, no correction is made).
The ratio can be greater than one or less than one depending on if
crystallites oriented along the designated axis are
overrepresented or underrepresented. For most crystal systems there is an
obvious choice for the direction of the unique axis and then only a single
term needs to be refined. If the number is close to 1, then the correction
is not needed.

The second method for reducing the effect of texture in a structural
refinement is to create a crystallite orientation probability surface as an
expansion in terms spherical harmonic functions. Only functions consistent with
cylindrical diffraction suymmetry and having texture symmetry
consistent with the Laue class of phase are used and are allowed,
so the higher the symmetry the fewer terms that are available for a given spherical harmonics order.
To use this correction, select the lowest order that provides
refinable terms and perform a refinement. If the texture index remains close to
one, then the correction is not needed. If a significant improvement is
noted in the profile Rwp, one may wish to see if a higher order expansion
gives an even larger improvement.

To characterize texture in a material, generally one needs data collected with the
sample at multiple orientations or, for TOF, with detectors at multiple
locations around the sample. In this case the detector orientation is given in
each histogram’s Sample Parameters and the sample’s orientation is described
with the Euler angles specifed on the phase’s Texture tab, which is also
where the texture type (cylindrical, rolling,…) and the spherical
harmonic order is selected. This should not be used with a single dataset and
should not be used if the preferred orientations corrections are used.

The coordinate system used for texture characterization is defined where
the sample coordinates (Psi, gamma) are defined with an instrument coordinate
system (I, J, K) such that K is normal to the diffraction plane and J is coincident with the
direction of the incident radiation beam toward the source. We further define
a standard set of right-handed goniometer eulerian angles (Omega, Chi, Phi) so that Omega and Phi are
rotations about K and Chi is a rotation about J when Omega = 0. Finally, as the sample
may be mounted so that the sample coordinate system (Is, Js, Ks) does not coincide with
the instrument coordinate system (I, J, K), we define three eulerian sample rotation angles
(Omega-s, Chi-s, Phi-s) that describe the rotation from (Is, Js, Ks) to (I, J, K). The sample rotation
angles are defined so that with the goniometer angles at zero Omega-s and Phi-s are rotations
about K and Chi-s is a rotation about J.

Three typical examples:

	Bragg-Brentano laboratory diffractometer: Chi=0

	Debye-Scherrer counter detector; sample capillary axis perpendicular to diffraction plane: Chi=90

	Debye-Scherrer 2D area detector positioned directly behind sample; sample capillary axis horizontal; Chi=0

NB: The area detector azimuthal angle will equal 0 in horizontal plane to right as viewed from x-ray source and will equal
90 at vertical “up” direction.

2.16. ISODISTORT implementation

CIFs prepared with the ISODISTORT web site
https://stokes.byu.edu/iso/isodistort_version5.6.1/isodistort.php
[B. J. Campbell, H. T. Stokes, D. E. Tanner, and D. M. Hatch, “ISODISPLACE: An Internet Tool for Exploring Structural Distortions.”
J. Appl. Cryst. 39, 607-614 (2006).] can be read into GSAS-II using import CIF. This will cause constraints to be established for
structural distortion modes read from the CIF. At present, of the five types of modes only displacive(_iso_displacivemode…)
and occupancy (_iso_occupancymode…) are processed. Not yet processed: _iso_magneticmode…,
_iso_rotationalmode… & _iso_strainmode…

The CIF importer G2phase_CIF implements class G2phase_CIF.CIFPhaseReader which offers two methods associated
with ISODISTORT (ID) input. Method G2phase_CIF.CIFPhaseReader.ISODISTORT_test() checks to see if a CIF block contains
the loops with _iso_displacivemode_label or _iso_occupancymode_label items. If so, method
G2phase_CIF.CIFPhaseReader.ISODISTORT_proc() is called to read and interpret them. The results are placed into the
reader object’s .Phase class variable as a dict item with key 'ISODISTORT'.

Note that each mode ID has a long label with a name such as Pm-3m[1/2,1/2,1/2]R5+(a,a,0)[La:b:dsp]T1u(a). Function
G2phase_CIF.ISODISTORT_shortLbl() is used to create a short name for this, such as R5_T1u(a) which is made unique
by addition of _n if the short name is duplicated. As each mode is processed, a constraint corresponding to that mode is
created and is added to list in the reader object’s .Constraints class variable. Items placed into that list can either
be a list, which corresponds to a function (new var) type constraint definition entry, or an item
can be a dict, which provides help information for each constraint.

2.16.1. Displacive modes

The coordinate variables, as named by ISODISTORT, are placed in .Phase['ISODISTORT']['IsoVarList'] and the
corresponding GSASIIobj.G2VarObj objects for each are placed in .Phase['ISODISTORT']['G2VarList'].
The mode variables, as named by ISODISTORT, are placed in .Phase['ISODISTORT']['IsoModeList'] and the
corresponding GSASIIobj.G2VarObj objects for each are placed in .Phase['ISODISTORT']['G2ModeList'].
[Use str(G2VarObj) to get the variable name from the G2VarObj object, but note that the phase number, n, for the prefix
“n::” cannot be determined as the phase number is not yet assigned.]

Displacive modes are a bit complex in that they relate to delta displacements, relative to an offset value for each coordinate,
and because the modes are normalized. While GSAS-II also uses displacements, these are added to the coordinates after
each refinement cycle and then the delta values are set to zero.
ISODISTORT uses fixed offsets (subtracted from the actual position
to obtain the delta values) that are taken from the parent structure coordinate and the initial offset value
(in _iso_deltacoordinate_value) and these are placed in
.Phase['ISODISTORT']['G2coordOffset'] in the same order as .Phase['ISODISTORT']['G2ModeList'],
.Phase['ISODISTORT']['IsoVarList'] and ‘’.Phase[ISODISTORT’][‘G2parentCoords’]’’.’

The normalization factors (which the delta values are divided by)
are taken from _iso_displacivemodenorm_value and are placed in .Phase['ISODISTORT']['NormList'] in the same
order as as ...['IsoModeList'] and ...['G2ModeList'].

The CIF contains a sparse matrix, from the loop_ containing _iso_displacivemodematrix_value which provides the equations
for determining the mode values from the coordinates, that matrix is placed in .Phase['ISODISTORT']['Mode2VarMatrix'].
The matrix is inverted to produce .Phase['ISODISTORT']['Var2ModeMatrix'], which determines how to compute the
mode values from the delta coordinate values. These values are used for the in GSASIIconstrGUI.ShowIsoDistortCalc(),
which shows coordinate and mode values, the latter with s.u. values.

2.16.2. Occupancy modes

The delta occupancy variables, as named by ISODISTORT, are placed in
.Phase['ISODISTORT']['OccVarList'] and the corresponding GSASIIobj.G2VarObj objects for each are placed
in .Phase['ISODISTORT']['G2OccVarList']. The mode variables, as named by ISODISTORT, are placed in
.Phase['ISODISTORT']['OccModeList'] and the corresponding GSASIIobj.G2VarObj objects for each are placed
in .Phase['ISODISTORT']['G2OccModeList'].

Occupancy modes, like Displacive modes, are also refined as delta values. However, GSAS-II directly refines the fractional
occupancies. Offset values for each atom, are taken from _iso_occupancy_formula and are placed in
.Phase['ISODISTORT']['ParentOcc]. (Offset values are subtracted from the actual position to obtain the delta values.)
Modes are normalized (where the mode values are divided by the normalization factor) are taken from _iso_occupancymodenorm_value
and are placed in .Phase['ISODISTORT']['OccNormList'] in the same order as as ...['OccModeList'] and
...['G2OccModeList'].

The CIF contains a sparse matrix, from the loop_ containing _iso_occupancymodematrix_value, which provides the
equations for determining the mode values from the coordinates. That matrix is placed in .Phase['ISODISTORT']['Occ2VarMatrix'].
The matrix is inverted to produce .Phase['ISODISTORT']['Var2OccMatrix'], which determines how to compute the
mode values from the delta coordinate values.

2.16.3. Mode Computations

Constraints are processed after the CIF has been read in GSASIIdataGUI.GSASII.OnImportPhase() or
GSASIIscriptable.G2Project.add_phase() by moving them from the reader object’s .Constraints
class variable to the Constraints tree entry’s [‘Phase’] list (for list items defining constraints) or
the Constraints tree entry’s [‘_Explain’] dict (for dict items defining constraint help information)

The information in .Phase['ISODISTORT'] is used in GSASIIconstrGUI.ShowIsoDistortCalc() which shows coordinate and mode
values, the latter with s.u. values. This can be called from the Constraints and Phase/Atoms tree items.

Before each refinement, constraints are processed as described elsewhere. After a refinement
is complete, GSASIIstrIO.PrintIndependentVars() shows the shifts and s.u.’s on the refined modes,
using GSAS-II values, but GSASIIstrIO.PrintISOmodes() prints the ISODISTORT modes as computed in the web site.

2.17. Parameter Limits

One of the most often requested “enhancements” for GSAS-II would be the inclusion
of constraints to force parameters such as occupancies or Uiso values to stay within
expected ranges. While it is possible for users to supply their own restraints that would
perform this by supplying an appropriate expression with the “General” restraints, the
GSAS-II authors do not feel that use of restraints or constraints are a good solution for
this common problem where parameters refine to non-physical values. This is because when
this occurs, most likely one of the following cases is occurring:

	there is a significant problem
with the model, for example for an x-ray fit if an O atom is placed where a S is actually
present, the Uiso will refine artificially small or the occupancy much larger than unity
to try to compensate for the missing electrons; or

	the data are simply insensitive
to the parameter or combination of parameters, for example unless very high-Q data
are included, the effects of a occupancy and Uiso value can have compensating effects,
so an assumption must be made; likewise, with neutron data natural-abundance V atoms
are nearly invisible due to weak coherent scattering. No parameters can be fit for a
V atom with neutrons.

	the parameter is non-physical (such as a negative Uiso value) but within
two sigma (sigma = standard uncertainty, aka e.s.d.) of a reasonable value,
in which case the
value is not problematic as it is experimentally indistinguishable from an
expected value.

	there is a systematic problem with the data (experimental error)

In all these cases, this situation needs to be reviewed by a crystallographer to decide
how to best determine a structural model for these data. An implementation with a constraint
or restraint is likely to simply hide the problem from the user, making it more probable
that a poor model choice is obtained.

What GSAS-II does implement is to allow users to specify ranges for parameters
that works by disabling
refinement of parameters that refine beyond either a lower limit or an upper limit, where
either or both may be optionally specified. Parameters limits are specified in the Controls
tree entry in dicts named as Controls['parmMaxDict'] and Controls['parmMinDict'], where
the keys are G2VarObj objects corresponding to standard GSAS-II variable
(see getVarDescr() and CompileVarDesc()) names, where a
wildcard (‘*’) may optionally be used for histogram number or atom number
(phase number is intentionally not allowed as a wildcard as it makes little sense
to group the same parameter together different phases). Note
that prmLookup() is used to see if a name matches a wildcard. The upper or lower limit
is placed into these dicts as a float value. These values can be edited using the window
created by the Calculate/”View LS parms” menu command or in scripting with the
GSASIIscriptable.G2Project.set_Controls() function.
In the GUI, a checkbox labeled “match all histograms/atoms” is used to insert a wildcard
into the appropriate part of the variable name.

When a refinement is conducted, routine GSASIIstrMain.dropOOBvars() is used to
find parameters that have refined to values outside their limits. If this occurs, the parameter
is set to the limiting value and the variable name is added to a list of frozen variables
(as a G2VarObj objects) kept in a list in the
Controls['parmFrozen'] dict. In a sequential refinement, this is kept separate for
each histogram as a list in
Controls['parmFrozen'][histogram] (where the key is the histogram name) or as a list in
Controls['parmFrozen']['FrozenList'] for a non-sequential fit.
This allows different variables
to be frozen in each section of a sequential fit.
Frozen parameters are not included in refinements through removal from the
list of parameters to be refined (varyList) in GSASIIstrMain.Refine() or
GSASIIstrMain.SeqRefine().
The data window for the Controls tree item shows the number of Frozen variables and
the individual variables can be viewed with the Calculate/”View LS parms” menu window or
obtained with GSASIIscriptable.G2Project.get_Frozen().
Once a variable is frozen, it will not be refined in any
future refinements unless the the variable is removed (manually) from the list. This can also
be done with the Calculate/”View LS parms” menu window or
GSASIIscriptable.G2Project.set_Frozen().

See also

G2VarObj
getVarDescr()
CompileVarDesc()
prmLookup()
GSASIIctrlGUI.ShowLSParms
GSASIIctrlGUI.VirtualVarBox
GSASIIstrIO.SetUsedHistogramsAndPhases()
GSASIIstrIO.SaveUpdatedHistogramsAndPhases()
GSASIIstrIO.SetSeqResult()
GSASIIstrMain.dropOOBvars()
GSASIIscriptable.G2Project.set_Controls()
GSASIIscriptable.G2Project.get_Frozen()
GSASIIscriptable.G2Project.set_Frozen()

2.18. GSASIIobj Classes and routines

Classes and routines defined in GSASIIobj follow.

	
GSASIIobj.AddPhase2Index(rdObj, filename)

	Add a phase to the index during reading
Used where constraints are generated during import (ISODISTORT CIFs)

	
GSASIIobj.AtomIdLookup = {}

	dict listing for each phase index as a str, the atom label and atom random Id,
keyed by atom sequential index as a str;
best to access this using LookupAtomLabel()

	
GSASIIobj.AtomRanIdLookup = {}

	dict listing for each phase the atom sequential index keyed by atom random Id;
best to access this using LookupAtomId()

	
GSASIIobj.CompileVarDesc()

	Set the values in the variable lookup tables
(reVarDesc and reVarStep).
This is called in getDescr() and getVarStep() so this
initialization is always done before use. These variables are
also used in script makeVarTbl.py which creates the table in section 3.2
of the Sphinx docs (Variable names in GSAS-II).

Note that keys may contain regular expressions, where ‘[xyz]’
matches ‘x’ ‘y’ or ‘z’ (equivalently ‘[x-z]’ describes this as range
of values). ‘.*’ matches any string. For example:

'AUiso':'Atomic isotropic displacement parameter',

will match variable 'p::AUiso:a'.
If parentheses are used in the key, the contents of those parentheses can be
used in the value, such as:

'AU([123][123])':'Atomic anisotropic displacement parameter U\1',

will match AU11, AU23,… and U11, U23 etc will be displayed
in the value when used.

	
GSASIIobj.CreatePDFitems(G2frame, PWDRtree, ElList, Qlimits, numAtm=1, FltBkg=0, PDFnames=[])

	Create and initialize a new set of PDF tree entries

	Parameters:

	
	G2frame (Frame) – main GSAS-II tree frame object

	PWDRtree (str) – name of PWDR to be used to create PDF item

	ElList (dict) – data structure with composition

	Qlimits (list) – Q limits to be used for computing the PDF

	numAtm (float) – no. atom in chemical formula

	FltBkg (float) – flat background value

	PDFnames (list) – previously used PDF names

	Returns:

	the Id of the newly created PDF entry

	
GSASIIobj.DefaultControls = {'Author': 'no name', 'Copy2Next': False, 'F**2': False, 'FreePrm1': 'Sample humidity (%)', 'FreePrm2': 'Sample voltage (V)', 'FreePrm3': 'Applied load (MN)', 'HatomFix': False, 'Reverse Seq': False, 'SVDtol': 1e-06, 'ShowCell': False, 'UsrReject': {'MaxD': 500.0, 'MaxDF/F': 100.0, 'MinD': 0.05, 'MinExt': 0.01, 'minF/sig': 0.0}, 'deriv type': 'analytic Hessian', 'max cyc': 3, 'min dM/M': 0.001, 'newLeBail': False, 'shift factor': 1.0}

	Values to be used as defaults for the initial contents of the Controls
data tree item.

	
class GSASIIobj.ExpressionCalcObj(exprObj)

	An object used to evaluate an expression from a ExpressionObj
object.

	Parameters:

	exprObj (ExpressionObj) – a ExpressionObj expression object with
an expression string and mappings for the parameter labels in that object.

	
EvalExpression()

	Evaluate an expression. Note that the expression
and mapping are taken from the ExpressionObj expression object
and the parameter values were specified in SetupCalc().
:returns: a single value for the expression. If parameter
values are arrays (for example, from wild-carded variable names),
the sum of the resulting expression is returned.

For example, if the expression is 'A*B',
where A is 2.0 and B maps to '1::Afrac:*', which evaluates to:

[0.5, 1, 0.5]

then the result will be 4.0.

	
SetupCalc(parmDict)

	Do all preparations to use the expression for computation.
Adds the free parameter values to the parameter dict (parmDict).

	
UpdateDict(parmDict)

	Update the dict for the expression with values in a dict
:param dict parmDict: a dict of values, items not in use are ignored

	
UpdateVars(varList, valList)

	Update the dict for the expression with a set of values
:param list varList: a list of variable names
:param list valList: a list of corresponding values

	
__init__(exprObj)

	

	
__weakref__

	list of weak references to the object

	
compiledExpr

	The expression as compiled byte-code

	
eObj

	The expression and mappings; a ExpressionObj object

	
exprDict

	dict that defines values for labels used in expression and packages
referenced by functions

	
fxnpkgdict

	a dict with references to packages needed to
find functions referenced in the expression.

	
lblLookup

	Lookup table that specifies the expression label name that is
tied to a particular GSAS-II parameters in the parmDict.

	
parmDict

	A copy of the parameter dictionary, for distance and angle computation

	
su

	Standard error evaluation where supplied by the evaluator

	
varLookup

	Lookup table that specifies the GSAS-II variable(s)
indexed by the expression label name. (Used for only for diagnostics
not evaluation of expression.)

	
class GSASIIobj.ExpressionObj

	Defines an object with a user-defined expression, to be used for
secondary fits or restraints. Object is created null, but is changed
using LoadExpression(). This contains only the minimum
information that needs to be stored to save and load the expression
and how it is mapped to GSAS-II variables.

	
CheckVars()

	Check that the expression can be parsed, all functions are
defined and that input loaded into the object is internally
consistent. If not an Exception is raised.

	Returns:

	a dict with references to packages needed to
find functions referenced in the expression.

	
EditExpression(exprVarLst, varSelect, varName, varValue, varRefflag)

	Load the expression and associated settings from the object into
arrays used for editing.

	Parameters:

	
	exprVarLst (list) – parameter labels found in the expression

	varSelect (dict) – this will be 0 for Free parameters
and non-zero for expression labels linked to G2 variables.

	varName (dict) – Defines a name (str) associated with each free parameter

	varValue (dict) – Defines a value (float) associated with each free parameter

	varRefflag (dict) – Defines a refinement flag (bool)
associated with each free parameter

	Returns:

	the expression as a str

	
GetDepVar()

	return the dependent variable, or None

	
GetIndependentVars()

	Returns the names of the required independent parameters used in expression

	
GetVaried()

	Returns the names of the free parameters that will be refined

	
GetVariedVarVal()

	Returns the names and values of the free parameters that will be refined

	
LoadExpression(expr, exprVarLst, varSelect, varName, varValue, varRefflag)

	Load the expression and associated settings into the object. Raises
an exception if the expression is not parsed, if not all functions
are defined or if not all needed parameter labels in the expression
are defined.

This will not test if the variable referenced in these definitions
are actually in the parameter dictionary. This is checked when the
computation for the expression is done in SetupCalc().

	Parameters:

	
	expr (str) – the expression

	exprVarLst (list) – parameter labels found in the expression

	varSelect (dict) – this will be 0 for Free parameters
and non-zero for expression labels linked to G2 variables.

	varName (dict) – Defines a name (str) associated with each free parameter

	varValue (dict) – Defines a value (float) associated with each free parameter

	varRefflag (dict) – Defines a refinement flag (bool)
associated with each free parameter

	
ParseExpression(expr)

	Parse an expression and return a dict of called functions and
the variables used in the expression. Returns None in case an error
is encountered. If packages are referenced in functions, they are loaded
and the functions are looked up into the modules global
workspace.

Note that no changes are made to the object other than
saving an error message, so that this can be used for testing prior
to the save.

	Returns:

	a list of used variables

	
SetDepVar(var)

	Set the dependent variable, if used

	
UpdateVariedVars(varyList, values)

	Updates values for the free parameters (after a refinement); only updates refined vars

	
__init__()

	

	
__weakref__

	list of weak references to the object

	
assgnVars

	A dict where keys are label names in the expression mapping to a GSAS-II
variable. The value a G2 variable name.
Note that the G2 variable name may contain a wild-card and correspond to
multiple values.

	
expression

	The expression as a text string

	
freeVars

	A dict where keys are label names in the expression mapping to a free
parameter. The value is a list with:

	a name assigned to the parameter

	a value for to the parameter and

	a flag to determine if the variable is refined.

	
lastError

	Shows last encountered error in processing expression
(list of 1-3 str values)

	
GSASIIobj.FindFunction(f)

	Find the object corresponding to function f

	Parameters:

	f (str) – a function name such as ‘numpy.exp’

	Returns:

	(pkgdict,pkgobj) where pkgdict contains a dict
that defines the package location(s) and where pkgobj
defines the object associated with the function.
If the function is not found, pkgobj is None.

	
exception GSASIIobj.G2Exception(msg)

	A generic GSAS-II exception class

	
__init__(msg)

	

	
__str__()

	Return str(self).

	
__weakref__

	list of weak references to the object

	
exception GSASIIobj.G2RefineCancel(msg)

	Raised when Cancel is pressed in a refinement dialog

	
__init__(msg)

	

	
__str__()

	Return str(self).

	
__weakref__

	list of weak references to the object

	
class GSASIIobj.G2VarObj(*args)

	Defines a GSAS-II variable either using the phase/atom/histogram
unique Id numbers or using a character string that specifies
variables by phase/atom/histogram number (which can change).
Note that GSASIIstrIO.GetUsedHistogramsAndPhases(),
which calls IndexAllIds() (or
GSASIIscriptable.G2Project.index_ids()) should be used to
(re)load the current Ids
before creating or later using the G2VarObj object.

This can store rigid body variables, but does not translate the residue # and
body # to/from random Ids

A G2VarObj object can be created with a single parameter:

	Parameters:

	varname (str/tuple) –
	a single value can be used to create a G2VarObj
	object. If a string, it must be of form “p:h:var” or “p:h:var:a”, where

	p is the phase number (which may be left blank or may be ‘*’ to indicate all phases);

	h is the histogram number (which may be left blank or may be ‘*’ to indicate all histograms);

	a is the atom number (which may be left blank in which case the third colon is omitted).
The atom number can be specified as ‘*’ if a phase number is specified (not as ‘*’).
For rigid body variables, specify a will be a string of form “residue:body#”

Alternately a single tuple of form (Phase,Histogram,VarName,AtomID) can be used, where
Phase, Histogram, and AtomID are None or are ranId values (or one can be ‘*’)
and VarName is a string. Note that if Phase is ‘*’ then the AtomID is an atom number.
For a rigid body variables, AtomID is a string of form “residue:body#”.

If four positional arguments are supplied, they are:

	Parameters:

	
	phasenum (str/int) – The number for the phase (or None or ‘*’)

	histnum (str/int) – The number for the histogram (or None or ‘*’)

	varname (str) – a single value can be used to create a G2VarObj

	atomnum (str/int) – The number for the atom (or None or ‘*’)

	
__eq__(other)

	Allow comparison of G2VarObj to other G2VarObj objects or strings.
If any field is a wildcard (‘*’) that field matches.

	
__hash__()

	Allow G2VarObj to be a dict key by implementing hashing

	
__init__(*args)

	

	
__repr__()

	Return the detailed contents of the object

	
__str__()

	Return str(self).

	
__weakref__

	list of weak references to the object

	
_show()

	For testing, shows the current lookup table

	
fmtVarByMode(seqmode, note, warnmsg)

	Format a parameter object for display. Note that these changes
are only temporary and are only shown only when the Constraints
data tree is selected.

	In a non-sequential refinement or where the mode is ‘use-all’, the
name is converted unchanged to a str

	In a sequential refinement when the mode is ‘wildcards-only’ the
name is converted unchanged to a str but a warning is added
for non-wildcarded HAP or Histogram parameters

	In a sequential refinement or where the mode is ‘auto-wildcard’,
a histogram number is converted to a wildcard (*) and then
converted to str

	Parameters:

	
	mode (str) – the sequential mode (see above)

	note (str) – value displayed on the line of the constraint/equiv.

	warnmsg (str) – a message saying the constraint is not used

	Returns:

	varname, explain, note, warnmsg (all str values) where:

	varname is the parameter expressed as a string,

	explain is blank unless there is a warning explanation about
the parameter or blank

	note is the previous value unless overridden

	warnmsg is the previous value unless overridden

	
varname(hist=None)

	Formats the GSAS-II variable name as a “traditional” GSAS-II variable
string (p:h:<var>:a) or (p:h:<var>)

	Parameters:

	hist (str/int) – if specified, overrides the histogram number
with the specified value

	Returns:

	the variable name as a str

	
GSASIIobj.GenWildCard(varlist)

	Generate wildcard versions of G2 variables. These introduce ‘*’
for a phase, histogram or atom number (but only for one of these
fields) but only when there is more than one matching variable in the
input variable list. So if the input is this:

varlist = ['0::AUiso:0', '0::AUiso:1', '1::AUiso:0']

then the output will be this:

wildList = ['*::AUiso:0', '0::AUiso:*']

	Parameters:

	varlist (list) – an input list of GSAS-II variable names
(such as 0::AUiso:0)

	Returns:

	wildList, the generated list of wild card variable names.

	
GSASIIobj.GetPhaseNames(fl)

	Returns a list of phase names found under ‘Phases’ in GSASII gpx file
NB: there is another one of these in GSASIIstrIO.py that uses the gpx filename

	Parameters:

	fl (file) – opened .gpx file

	Returns:

	list of phase names

	
GSASIIobj.HistIdLookup = {}

	dict listing histogram name and random Id, keyed by sequential histogram index as a str;
best to access this using LookupHistName()

	
GSASIIobj.HistRanIdLookup = {}

	dict listing histogram sequential index keyed by histogram random Id;
best to access this using LookupHistId()

	
GSASIIobj.HowDidIgetHere(wherecalledonly=False)

	Show a traceback with calls that brought us to the current location.
Used for debugging.

	
class GSASIIobj.ImportBaseclass(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	Defines a base class for the reading of input files (diffraction
data, coordinates,…). See Writing a Import Routine
for an explanation on how to use a subclass of this class.

	
CIFValidator(filepointer)

	A ContentsValidator() for use to validate CIF files.

	
ContentsValidator(filename)

	This routine will attempt to determine if the file can be read
with the current format.
This will typically be overridden with a method that
takes a quick scan of [some of]
the file contents to do a “sanity” check if the file
appears to match the selected format.
the file must be opened here with the correct format (binary/text)

	
ExtensionValidator(filename)

	This methods checks if the file has the correct extension

	Returns:

	
	False if this filename will not be supported by this reader (only
when strictExtension is True)

	True if the extension matches the list supplied by the reader

	None if the reader allows un-registered extensions

	
exception ImportException

	Defines an Exception that is used when an import routine hits an expected error,
usually in .Reader.

Good practice is that the Reader should define a value in self.errors that
tells the user some information about what is wrong with their file.

	
__weakref__

	list of weak references to the object

	
ReInitialize()

	Reinitialize the Reader to initial settings

	
__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	

	
__weakref__

	list of weak references to the object

	
class GSASIIobj.ImportImage(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	Defines a base class for the reading of images

Images are read in only these places:

	Initial reading is typically done from a menu item
with a call to GSASIIdataGUI.GSASII.OnImportImage()
which in turn calls GSASIIdataGUI.GSASII.OnImportGeneric(). That calls
methods ExtensionValidator(), ContentsValidator() and
Reader(). This returns a list of reader objects for each read image.
Also used in GSASIIscriptable.import_generic().

	Images are read alternatively in GSASIIIO.ReadImages(), which puts image info
directly into the data tree.

	Images are reloaded with GSASIIIO.GetImageData().

When reading an image, the Reader() routine in the ImportImage class
should set:

	Comments: a list of strings (str),

	Npix: the number of pixels in the image (int),

	Image: the actual image as a numpy array (np.array)

	Data: a dict defining image parameters (dict). Within this dict the following
data items are needed:

	‘pixelSize’: size of each pixel in microns (such as [200.,200.].

	‘wavelength’: wavelength in \(\AA\).

	‘distance’: distance of detector from sample in cm.

	‘center’: uncalibrated center of beam on detector (such as [204.8,204.8].

	‘size’: size of image (such as [2048,2048]).

	‘ImageTag’: image number or other keyword used to retrieve image from
a multi-image data file (defaults to 1 if not specified).

	‘sumfile’: holds sum image file name if a sum was produced from a multi image file

optional data items:

	repeat: set to True if there are additional images to
read in the file, False otherwise

	repeatcount: set to the number of the image.

Note that the above is initialized with InitParameters().
(Also see Writing a Import Routine
for an explanation on how to use import classes in general.)

	
InitParameters()

	initialize the instrument parameters structure

	
LoadImage(ParentFrame, imagefile, imagetag=None)

	Optionally, call this after reading in an image to load it into the tree.
This saves time by preventing a reread of the same information.

	
ReInitialize()

	Reinitialize the Reader to initial settings – not used at present

	
__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	

	
class GSASIIobj.ImportPDFData(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	Defines a base class for the reading of files with PDF G(R) data.
See Writing a Import Routine
for an explanation on how to use this class.

	
ReInitialize()

	Reinitialize the Reader to initial settings

	
__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	

	
class GSASIIobj.ImportPhase(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	Defines a base class for the reading of files with coordinates

Objects constructed that subclass this (in import/G2phase_*.py etc.) will be used
in GSASIIdataGUI.GSASII.OnImportPhase() and in
GSASIIscriptable.import_generic().
See Writing a Import Routine
for an explanation on how to use this class.

	
__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	

	
class GSASIIobj.ImportPowderData(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	Defines a base class for the reading of files with powder data.

Objects constructed that subclass this (in import/G2pwd_*.py etc.) will be used
in GSASIIdataGUI.GSASII.OnImportPowder() and in
GSASIIscriptable.import_generic().
See Writing a Import Routine
for an explanation on how to use this class.

	
ReInitialize()

	Reinitialize the Reader to initial settings

	
__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	

	
class GSASIIobj.ImportReflectometryData(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	Defines a base class for the reading of files with reflectometry data.
See Writing a Import Routine
for an explanation on how to use this class.

	
ReInitialize()

	Reinitialize the Reader to initial settings

	
__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	

	
class GSASIIobj.ImportSmallAngleData(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	Defines a base class for the reading of files with small angle data.
See Writing a Import Routine
for an explanation on how to use this class.

	
ReInitialize()

	Reinitialize the Reader to initial settings

	
__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	

	
class GSASIIobj.ImportStructFactor(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	Defines a base class for the reading of files with tables
of structure factors.

Structure factors are read with a call to GSASIIdataGUI.GSASII.OnImportSfact()
which in turn calls GSASIIdataGUI.GSASII.OnImportGeneric(), which calls
methods ExtensionValidator(), ContentsValidator() and
Reader().

See Writing a Import Routine
for an explanation on how to use import classes in general. The specifics
for reading a structure factor histogram require that
the Reader() routine in the import
class need to do only a few things: It
should load RefDict item 'RefList' with the reflection list,
and set Parameters with the instrument parameters
(initialized with InitParameters() and set with UpdateParameters()).

	
Banks

	self.RefDict is a dict containing the reflection information, as read from the file.
Item ‘RefList’ contains the reflection information. See the
Single Crystal Reflection Data Structure
for the contents of each row. Dict element ‘FF’
contains the form factor values for each element type; if this entry
is left as initialized (an empty list) it will be initialized as needed later.

	
InitParameters()

	initialize the instrument parameters structure

	
Parameters

	self.Parameters is a list with two dicts for data parameter settings

	
ReInitialize()

	Reinitialize the Reader to initial settings

	
UpdateParameters(Type=None, Wave=None)

	Revise the instrument parameters

	
__init__(formatName, longFormatName=None, extensionlist=[], strictExtension=False)

	

	
GSASIIobj.IndexAllIds(Histograms, Phases)

	Scan through the used phases & histograms and create an index
to the random numbers of phases, histograms and atoms. While doing this,
confirm that assigned random numbers are unique – just in case lightning
strikes twice in the same place.

Note: this code assumes that the atom random Id (ranId) is the last
element each atom record.

This is called when phases & histograms are looked up
in these places (only):

	GSASIIstrIO.GetUsedHistogramsAndPhases() (which loads the histograms and phases from a GPX file),

	GetUsedHistogramsAndPhasesfromTree() (which does the same thing but from the data tree.)

	OnFileClose() (clears out an old project)

Note that globals PhaseIdLookup and PhaseRanIdLookup are
also set in AddPhase2Index() to temporarily assign a phase number
as a phase is being imported.

TODO: do we need a lookup for rigid body variables?

	
GSASIIobj.LookupAtomId(pId, ranId)

	Get the atom number from a phase and atom random Id

	Parameters:

	
	pId (int/str) – the sequential number of the phase

	ranId (int) – the random Id assigned to an atom

	Returns:

	the index number of the atom (str)

	
GSASIIobj.LookupAtomLabel(pId, index)

	Get the atom label from a phase and atom index number

	Parameters:

	
	pId (int/str) – the sequential number of the phase

	index (int) – the index of the atom in the list of atoms

	Returns:

	the label for the atom (str) and the random Id of the atom (int)

	
GSASIIobj.LookupHistId(ranId)

	Get the histogram number and name from a histogram random Id

	Parameters:

	ranId (int) – the random Id assigned to a histogram

	Returns:

	the sequential Id (hId) number for the histogram (str)

	
GSASIIobj.LookupHistName(hId)

	Get the histogram number and name from a histogram Id

	Parameters:

	hId (int/str) – the sequential assigned to a histogram

	Returns:

	(hist,ranId) where hist is the name of the histogram (str)
and ranId is the random # id for the histogram (int)

	
GSASIIobj.LookupPhaseId(ranId)

	Get the phase number and name from a phase random Id

	Parameters:

	ranId (int) – the random Id assigned to a phase

	Returns:

	the sequential Id (pId) number for the phase (str)

	
GSASIIobj.LookupPhaseName(pId)

	Get the phase number and name from a phase Id

	Parameters:

	pId (int/str) – the sequential assigned to a phase

	Returns:

	(phase,ranId) where phase is the name of the phase (str)
and ranId is the random # id for the phase (int)

	
GSASIIobj.LookupWildCard(varname, varlist)

	returns a list of variable names from list varname
that match wildcard name in varname

	Parameters:

	
	varname (str) – a G2 variable name containing a wildcard
(such as *::var)

	varlist (list) – the list of all variable names used in
the current project

	Returns:

	a list of matching GSAS-II variables (may be empty)

	
GSASIIobj.MakeUniqueLabel(lbl, labellist)

	Make sure that every a label is unique against a list by adding
digits at the end until it is not found in list.

	Parameters:

	
	lbl (str) – the input label

	labellist (list) – the labels that have already been encountered

	Returns:

	lbl if not found in labellist or lbl with _1-9 (or
_10-99, etc.) appended at the end

	
GSASIIobj.PhaseIdLookup = {}

	dict listing phase name and random Id keyed by sequential phase index as a str;
best to access this using LookupPhaseName()

	
GSASIIobj.PhaseRanIdLookup = {}

	dict listing phase sequential index keyed by phase random Id;
best to access this using LookupPhaseId()

	
GSASIIobj.ReadCIF(URLorFile)

	Open a CIF, which may be specified as a file name or as a URL using PyCifRW
(from James Hester).
The open routine gets confused with DOS names that begin with a letter and colon
“C:dir” so this routine will try to open the passed name as a file and if that
fails, try it as a URL

	Parameters:

	URLorFile (str) – string containing a URL or a file name. Code will try first
to open it as a file and then as a URL.

	Returns:

	a PyCifRW CIF object.

	
GSASIIobj.SetDefaultSample()

	Fills in default items for the Sample dictionary for Debye-Scherrer & SASD

	
GSASIIobj.SetNewPhase(Name='New Phase', SGData=None, cell=None, Super=None)

	Create a new phase dict with default values for various parameters

	Parameters:

	
	Name (str) – Name for new Phase

	SGData (dict) – space group data from GSASIIspc:SpcGroup();
defaults to data for P 1

	cell (list) – unit cell parameter list; defaults to
[1.0,1.0,1.0,90.,90,90.,1.]

	
GSASIIobj.ShortHistNames = {}

	a dict containing a possibly shortened and when non-unique numbered
version of the histogram name. Keyed by the histogram sequential index.

	
GSASIIobj.ShortPhaseNames = {}

	a dict containing a possibly shortened and when non-unique numbered
version of the phase name. Keyed by the phase sequential index.

	
class GSASIIobj.ShowTiming

	An object to use for timing repeated sections of code.

	Create the object with::
	tim0 = ShowTiming()

	Tag sections of code to be timed with::
	tim0.start(‘start’)
tim0.start(‘in section 1’)
tim0.start(‘in section 2’)

etc. (Note that each section should have a unique label.)

	After the last section, end timing with::
	tim0.end()

	Show timing results with::
	tim0.show()

	
__init__()

	

	
__weakref__

	list of weak references to the object

	
GSASIIobj.SortVariables(varlist)

	Sorts variable names in a sensible manner

	
GSASIIobj.StripUnicode(string, subs='.')

	Strip non-ASCII characters from strings

	Parameters:

	
	string (str) – string to strip Unicode characters from

	subs (str) – character(s) to place into string in place of each
Unicode character. Defaults to ‘.’

	Returns:

	a new string with only ASCII characters

	
GSASIIobj.TestIndexAll()

	Test if IndexAllIds() has been called to index all phases and
histograms (this is needed before G2VarObj() can be used.

	Returns:

	Returns True if indexing is needed.

	
GSASIIobj.VarDescr(varname)

	Return two strings with a more complete description for a GSAS-II variable

	Parameters:

	name (str) – A full G2 variable name with 2 or 3 or 4
colons (<p>:<h>:name[:<a>] or <p>::RBname:<r>:<t>])

	Returns:

	(loc,meaning) where loc describes what item the variable is mapped
(phase, histogram, etc.) and meaning describes what the variable does.

	
GSASIIobj._lookup(dic, key)

	Lookup a key in a dictionary, where None returns an empty string
but an unmatched key returns a question mark. Used in G2VarObj

	
GSASIIobj.fmtVarDescr(varname)

	Return a string with a more complete description for a GSAS-II variable

	Parameters:

	varname (str) – A full G2 variable name with 2 or 3 or 4
colons (<p>:<h>:name[:<a>] or <p>::RBname:<r>:<t>])

	Returns:

	a string with the description

	
GSASIIobj.getDescr(name)

	Return a short description for a GSAS-II variable

	Parameters:

	name (str) – The descriptive part of the variable name without colons (:)

	Returns:

	a short description or None if not found

	
GSASIIobj.getVarDescr(varname)

	Return a short description for a GSAS-II variable

	Parameters:

	name (str) – A full G2 variable name with 2 or 3 or 4
colons (<p>:<h>:name[:<a1>][:<a2>])

	Returns:

	a six element list as [p,`h`,`name`,`a1`,`a2`,`description`],
where p, h, a1, a2 are str values or None, for the phase number,
the histogram number and the atom number; name will always be
a str; and description is str or None.
If the variable name is incorrectly formed (for example, wrong
number of colons), None is returned instead of a list.

	
GSASIIobj.getVarStep(name, parmDict=None)

	Return a step size for computing the derivative of a GSAS-II variable

	Parameters:

	
	name (str) – A complete variable name (with colons, :)

	parmDict (dict) – A dict with parameter values or None (default)

	Returns:

	a float that should be an appropriate step size, either from
the value supplied in CompileVarDesc() or based on the value for
name in parmDict, if supplied. If not found or the value is zero,
a default value of 1e-5 is used. If parmDict is None (default) and
no value is provided in CompileVarDesc(), then None is returned.

	
GSASIIobj.prmLookup(name, prmDict)

	Looks for a parameter in a min/max dictionary, optionally
considering a wild card for histogram or atom number (use of
both will never occur at the same time).

	Parameters:

	
	name – a GSAS-II parameter name (str, see getVarDescr()
and CompileVarDesc()) or a G2VarObj object.

	prmDict (dict) – a min/max dictionary, (parmMinDict
or parmMaxDict in Controls) where keys are G2VarObj
objects.

	Returns:

	Two values, (matchname, value), are returned where:

	matchname (str) is the G2VarObj object
corresponding to the actual matched name,
which could contain a wildcard even if name does not; and

	value (float) which contains the parameter limit.

	
GSASIIobj.reVarDesc = {re.compile('([UVW])$'): 'Gaussian instrument broadening \\1', re.compile('([XYZ])$'): 'Cauchy instrument broadening \\1', re.compile('([XYZ])cos'): 'Cos position wave for \\1', re.compile('([XYZ])max'): 'ZigZag/Block max value for \\1', re.compile('([XYZ])sin'): 'Sin position wave for \\1', re.compile('([abc])$'): 'Lattice parameter, \\1, from Ai and Djk', re.compile('([vV]ol)'): 'Unit cell volume', re.compile('A([0-5])'): 'Reciprocal metric tensor component \\1', re.compile('A([xyz])$'): 'Fractional atomic coordinate, \\1', re.compile('AD\\([0-6],-[0-6]\\)([0-6])'): ' Atomic sp. harm. coeff for orbital, \\1', re.compile('AD\\([0-6],[0-6]\\)([0-6])'): ' Atomic sp. harm. coeff for orbital, \\1', re.compile('AM([xyz])$'): 'Atomic magnetic moment parameter, \\1', re.compile('ANe([01])'): ' Atomic <j0> orbital population for orbital, \\1', re.compile('AU([123][123])'): 'Atomic anisotropic displacement parameter U\\1', re.compile('AUiso'): 'Atomic isotropic displacement parameter', re.compile('Absorption'): 'Absorption coef.', re.compile('Afrac'): 'Atomic site fraction parameter', re.compile('Akappa([0-6])'): ' Atomic orbital softness for orbital, \\1', re.compile('Amul'): 'Atomic site multiplicity value', re.compile('Aspect ratio'): 'Particle aspect ratio', re.compile('B$'): 'Porod prefactor', re.compile('BF mult'): 'Background file multiplier', re.compile('Bab([AU])'): 'Babinet solvent scattering coef. \\1', re.compile('Back$'): 'background parameter', re.compile('Back(.*)'): 'Background term #\\1', re.compile('BkPkgam;(.*)'): 'Background peak #\\1 Cauchy width', re.compile('BkPkint;(.*)'): 'Background peak #\\1 intensity', re.compile('BkPkpos;(.*)'): 'Background peak #\\1 position', re.compile('BkPksig;(.*)'): 'Background peak #\\1 Gaussian width', re.compile('C\\([0-9]*,[0-9]*\\)'): 'spherical harmonics preferred orientation coef.', re.compile('Cutoff'): 'Porod cutoff', re.compile('D([123][123])'): 'Anisotropic strain coef. \\1', re.compile('Dcalc'): 'Calc. d-spacing', re.compile('DebyeA'): 'Debye model amplitude', re.compile('DebyeR'): 'Debye model radius', re.compile('DebyeU'): 'Debye model Uiso', re.compile('Depth'): 'Well depth', re.compile('Diameter'): 'Cylinder/disk diameter', re.compile('Displace([XY])'): 'Debye-Scherrer sample displacement \\1', re.compile('Dist'): 'Interparticle distance', re.compile('Eg$'): 'Secondary type I extinction', re.compile('Ep$'): 'Primary extinction', re.compile('Es$'): 'Secondary type II extinction', re.compile('Extinction'): 'Extinction coef.', re.compile('Fcos'): 'Cos site fraction modulation', re.compile('Flack'): 'Flack parameter', re.compile('FreePrm([123])'): 'User defined measurement parameter \\1', re.compile('Fsin'): 'Sin site fraction modulation', re.compile('Fwid'): 'Crenel function width', re.compile('Fzero'): 'Crenel function offset', re.compile('G$'): 'Guinier prefactor', re.compile('Gonio. radius'): 'Distance from sample to detector, mm', re.compile('I\\(L2\\)\\/I\\(L1\\)'): 'Ka2/Ka1 intensity ratio', re.compile('Lam'): 'Wavelength', re.compile('Layer Disp'): 'Layer displacement along beam', re.compile('LayerDisp'): 'Bragg-Brentano Layer displacement', re.compile('Length'): 'Cylinder length', re.compile('M([XYZ])cos$'): 'Cos mag. moment wave for \\1', re.compile('M([XYZ])sin$'): 'Sin mag. moment wave for \\1', re.compile('MD'): 'March-Dollase coef.', re.compile('Mean'): 'Particle mean radius', re.compile('Mustrain;.*'): 'Microstrain coefficient (delta Q/Q x 10**6)', re.compile('P$'): 'Porod power', re.compile('PDFmag'): 'PDF peak magnitude', re.compile('PDFpos'): 'PDF peak position', re.compile('PDFsig'): 'PDF peak std. dev.', re.compile('PkGam'): 'Bragg peak gamma', re.compile('PkInt'): 'Bragg peak intensity', re.compile('PkPos'): 'Bragg peak position', re.compile('PkSig'): 'Bragg peak sigma', re.compile('Polariz.'): 'Polarization correction', re.compile('Pressure'): 'Pressure level for measurement in MPa', re.compile('RBR([TLS])([123AB][123AB])'): 'Residue rigid body group disp. param.', re.compile('RBRO([aijk])'): 'Residue rigid body orientation parameter \\1', re.compile('RBRP([xyz])'): 'Residue rigid body \\1 position parameter', re.compile('RBRTr;.*'): 'Residue rigid body torsion parameter', re.compile('RBRU'): 'Residue rigid body group Uiso param.', re.compile('RBRf'): 'Residue rigid body site fraction', re.compile('RBSAtNo'): 'Atom number for spinning rigid body', re.compile('RBSO([aijk])'): 'Spinning rigid body orientation parameter \\1', re.compile('RBSP([xyz])'): 'Spinning rigid body \\1 position parameter', re.compile('RBSShC([1-20,1-20])'): 'Spinning rigid body sph. harmonics term', re.compile('RBSShRadius'): 'Spinning rigid body shell radius', re.compile('RBV([TLS])([123AB][123AB])'): 'Residue rigid body group disp. param.', re.compile('RBV.*'): 'Vector rigid body parameter', re.compile('RBVO([aijk])'): 'Vector rigid body orientation parameter \\1', re.compile('RBVP([xyz])'): 'Vector rigid body \\1 position parameter', re.compile('RBVU'): 'Residue rigid body group Uiso param.', re.compile('RBVf'): 'Vector rigid body site fraction', re.compile('Radius'): 'Sphere/cylinder/disk radius', re.compile('Rg$'): 'Guinier radius of gyration', re.compile('SH/L'): 'FCJ peak asymmetry correction', re.compile('Scale'): 'Phase fraction (as p:h:Scale) or Histogram scale factor (as :h:Scale)', re.compile('Shell thickness'): 'Multiplier to get inner(<1) or outer(>1) sphere radius', re.compile('Shift'): 'Bragg-Brentano sample displ.', re.compile('Size;.*'): 'Crystallite size value (in microns)', re.compile('StdDev'): 'Standard deviation in Mean', re.compile('Sticky'): 'Stickyness', re.compile('SurfRoughA'): 'Bragg-Brenano surface roughness A', re.compile('SurfRoughB'): 'Bragg-Brenano surface roughness B', re.compile('Temperature'): 'T value for measurement, K', re.compile('Thickness'): 'Disk thickness', re.compile('Tmax'): 'ZigZag/Block max location', re.compile('Tmin'): 'ZigZag/Block min location', re.compile('Transparency'): 'Bragg-Brentano sample tranparency', re.compile('TwinFr'): 'Twin fraction', re.compile('U([123][123])cos$'): 'Cos thermal wave for U\\1', re.compile('U([123][123])sin$'): 'Sin thermal wave for U\\1', re.compile('VolFr'): 'Dense scatterer volume fraction', re.compile('Volume'): 'Particle volume', re.compile('WgtFrac'): 'phase weight fraction', re.compile('Width'): 'Well width', re.compile('Zero'): 'Debye-Scherrer zero correction', re.compile('alpha'): 'TOF profile term', re.compile('alpha-([01])'): 'Pink profile term', re.compile('beta-([01q])'): 'TOF/Pink profile term', re.compile('constr([0-9]*)'): 'Generated degree of freedom from constraint', re.compile('dA([xyz])$'): 'Refined change to atomic coordinate, \\1', re.compile('dif([ABC])'): 'TOF to d-space calibration', re.compile('e([12][12])'): 'strain tensor e\\1', re.compile('eA$'): 'Cubic mustrain value', re.compile('epis'): 'Sticky sphere epsilon', re.compile('int$'): 'peak intensity', re.compile('mV([0-2])$'): 'Modulation vector component \\1', re.compile('nv-(.+)'): 'New variable assignment with name \\1', re.compile('pos$'): 'peak position', re.compile('sig-([012q])'): 'TOF profile term', re.compile('α'): 'Lattice parameter, α, computed from both Ai and Djk', re.compile('β'): 'Lattice parameter, β, computed from both Ai and Djk', re.compile('γ'): 'Lattice parameter, γ, computed from both Ai and Djk'}

	This dictionary lists descriptions for GSAS-II variables where
keys are compiled regular expressions that will match the name portion
of a parameter name. Initialized in CompileVarDesc().

	
GSASIIobj.reVarStep = {re.compile('([UVW])$'): 1e-05, re.compile('([XYZ])$'): 1e-05, re.compile('A([0-5])'): 1e-05, re.compile('AU([123][123])'): 0.0001, re.compile('AUiso'): 0.0001, re.compile('Afrac'): 1e-05, re.compile('Displace([XY])'): 0.1, re.compile('I\\(L2\\)\\/I\\(L1\\)'): 0.001, re.compile('Lam'): 1e-06, re.compile('Polariz.'): 0.001, re.compile('SH/L'): 0.0001, re.compile('dA([xyz])$'): 1e-06}

	This dictionary lists the preferred step size for numerical
derivative computation w/r to a GSAS-II variable. Keys are compiled
regular expressions and values are the step size for that parameter.
Initialized in CompileVarDesc().

	
GSASIIobj.removeNonRefined(parmList)

	Remove items from variable list that are not refined and should not
appear as options for constraints

	Parameters:

	parmList (list) – a list of strings of form “p:h:VAR:a” where
VAR is the variable name

	Returns:

	a list after removing variables where VAR matches a
entry in local variable NonRefinedList

	
GSASIIobj.validateAtomDrawType(typ, generalData={})

	Confirm that the selected Atom drawing type is valid for the current
phase. If not, use ‘vdW balls’. This is currently used only for setting a
default when atoms are added to the atoms draw list.

 \(\renewcommand\AA{\text{Å}}\)

3. GSASIIscriptable: Scripting Interface

3.1. Summary/Contents

Routines to use an increasing amount of GSAS-II’s capabilities from scripts,
without use of the graphical user interface (GUI). GSASIIscriptable can create and access
GSAS-II project (.gpx) files and can directly perform image handling and refinements.
The module defines wrapper classes (inheriting from G2ObjectWrapper) for a growing number
of data tree items.

GSASIIscriptable can be used in two ways. It offers a command-line mode, but
the more widely used and more powerful mode of GSASIIscriptable is
used is via Python scripts that
call the module’s application interface (API), these are summarized immediately below and are documented in the complete API documentation section.

While the command-line mode
provides access a number of features without writing Python scripts
via shell/batch commands (see GSASIIscriptable Command-line Interface), use in practice
seems somewhat clumsy. Command-line mode
is no longer being developed and its use is discouraged.

Scripting Documentation Contents

	GSASIIscriptable: Scripting Interface

	Summary/Contents

	Installation of GSASIIscriptable

	Application Interface (API) Summary

	Refinement parameters

	Specifying Refinement Parameters

	Access to other parameter settings

	Code Examples

	GSASIIscriptable Command-line Interface

	API: Complete Documentation

3.2. Installation of GSASIIscriptable

GSASIIscriptable is included as part of a standard GSAS-II installation that includes the GSAS-II GUI (as described in the installation instructions [https://advancedphotonsource.github.io/GSAS-II-tutorials/install.html]). People who will will use scripting extensively will still need access to the GUI
for some activities, since the scripting API has not yet been extended to all
features of GSAS-II and even if that is ever completed, there will still be some things that GSAS-II does with the GUI would be almost impossible to implement without a interactive graphical view of the data.

Nonetheless, there may be times where it does make sense to install GSAS-II without all of the GUI components, for example on a compute server.
The minimal requirements for use of GSASIIscriptable are only Python, numpy and scipy, but additional optional packages that can be utilized are described in
the Scripting Requirements section of the requirements chapter, which also provides some installation instructions.

In a standard GSAS-II installation, no changes are made to Python. When the GUI is invoked, a small script or Windows batch file is used to start GSAS-II inside Python. When
GSASIIscriptable is used, Python must be provided with the location of the GSAS-II files. There are two ways this can be done:

	define the GSAS-II installation location in the Python sys.path, or

	install a reference to GSAS-II inside Python.

The latter method requires an extra installation step, but has the advantage that
it allows writing portable GSAS-II scripts. This is discussed further in the
Shortcut for Scripting Access section of this chapter.

3.3. Application Interface (API) Summary

This section of the documentation provides an overview to API, with full documentation
in the API: Complete Documentation section. The typical API use will be with a Python script, such as
what is found in Code Examples. Most functionality is provided via the objects and methods
summarized below.

3.3.1. Overview of Classes

	Scripting class name

	Description

	G2Project

	G2Project:
A GSAS-II project file; provides references to objects below,
each corresponding to a tree item
(exception is G2AtomRecord)

	G2Phase

	G2Phase:
Provides phase information access
(also provides access to atom info via G2AtomRecord)

	G2AtomRecord

	G2AtomRecord:
Access to an atom within a phase

	G2PwdrData

	G2PwdrData:
Access to powder histogram info

	G2Single

	G2Single: Access to single crystal histogram info

	G2Image

	G2Image: Access to image info

	G2PDF

	G2PDF: PDF histogram info

	G2SeqRefRes

	G2SeqRefRes:
The sequential results table

3.3.2. Independent Functions

A small number of Scriptable routines do not require use of objects.

	method

	Use

	GenerateReflections()

	Generates a list of unique powder reflections

	SetPrintLevel()

	Sets the amount of output generated when running a script

	installScriptingShortcut()

	Installs GSASIIscriptable within Python as G2script

3.3.3. Class G2Project

All GSASIIscriptable scripts will need to create a G2Project object
either for a new GSAS-II project or to read in an existing project (.gpx) file.
The most commonly used routines in this object are:

	method

	Use

	save()

	Writes the current project to disk.

	add_powder_histogram()

	Used to read in powder diffraction data into a project file.

	add_simulated_powder_histogram()

	Defines a “dummy” powder diffraction data that will be simulated after a refinement step.

	add_image()

	Reads in an image into a project.

	add_phase()

	Adds a phase to a project

	add_PDF()

	Adds a PDF entry to a project (does not compute it)

	add_single_histogram()

	Used to read in a single crystal diffraction dataset into a project file.

	histogram()

	Finds a histogram from an object, name or random id reference, returning a
a G2PwdrData or G2Single object.

	histograms()

	Provides a list of histograms in the current project, as G2PwdrData or
as G2Single objects.

	histType()

	Determines the histogram type from an object, name or random id reference.

	phases()

	Provides a list of phases defined in the current project, as G2Phase objects

	images()

	Provides a list of images in the current project, as G2Image objects

	pdfs()

	Provides a list of PDFs in the current project, as G2PDF objects

	seqref()

	Returns a G2SeqRefRes object if there are Sequential Refinement results

	do_refinements()

	This is passed a list of dictionaries, where each dict defines a refinement step.
Passing a list with a single empty dict initiates a refinement with the current
parameters and flags. A refinement dict sets up a single refinement step
(as described in Project-level Parameter Dict). Also see Refinement recipe.

	set_refinement()

	This is passed a single dict which is used to set parameters and flags.
These actions can be performed also in do_refinements().

	get_Variable()

	Retrieves the value and esd for a parameter

	get_Covariance()

	Retrieves values and covariance for a set of refined parameters

	set_Controls()

	Set overall GSAS-II control settings such as number of cycles and to set up a sequential
fit. (Also see get_Controls() to read values.)

	imageMultiDistCalib()

	Performs a global calibration fit with images at multiple distance settings.

	get_Constraints()

	Retrieves constraint definition entries.

	add_HoldConstr()

	Adds a hold constraint on one or more variables

	add_EquivConstr()

	Adds an equivalence constraint on two or more variables

	add_EqnConstr()

	Adds an equation-type constraint on two or more variables

	add_NewVarConstr()

	Adds an new variable as a constraint on two or more variables

	ComputeWorstFit()

	Determines the parameters that will have the greatest impact on the fit if refined

3.3.4. Class G2Phase

Another common object in GSASIIscriptable scripts is G2Phase, used to encapsulate each phase in a project, with commonly used methods:

	method

	Use

	set_refinements()

	Provides a mechanism to set values and refinement flags for the phase. See Phase parameters
for more details. This information also can be supplied within a call
to do_refinements()
or set_refinement().

	clear_refinements()

	Unsets refinement flags for the phase.

	set_HAP_refinements()

	Provides a mechanism to set values and refinement flags for parameters specific to both this phase and
one of its histograms. See Histogram-and-phase parameters. This information also can be supplied within
a call to do_refinements() or
set_refinement().

	clear_HAP_refinements()

	Clears refinement flags specific to both this phase and one of its histograms.

	getHAPvalues()

	Returns values of parameters specific to both this phase and one of its histograms.

	copyHAPvalues()

	Copies HAP settings between from one phase/histogram and to other histograms in same phase.

	HAPvalue()

	Sets or retrieves values for some of the parameters specific to both this phase and
one or more of its histograms.

	atoms()

	Returns a list of atoms in the phase

	atom()

	Returns an atom from its label

	add_atom()

	Adds an atom to a phase

	histograms()

	Returns a list of histograms linked to the phase

	get_cell()

	Returns unit cell parameters (also see get_cell_and_esd())

	export_CIF()

	Writes a CIF for the phase

	setSampleProfile()

	Sets sample broadening parameters

	clearDistRestraint()

	Clears any previously defined bond distance restraint(s) for the selected phase

	addDistRestraint()

	Finds and defines new bond distance restraint(s) for the selected phase

	setDistRestraintWeight()

	Sets the weighting factor for the bond distance restraints

3.3.5. Class G2PwdrData

Another common object in GSASIIscriptable scripts is G2PwdrData, which encapsulate each powder diffraction histogram in a project, with commonly used methods:

	method

	Use

	set_refinements()

	Provides a mechanism to set values and refinement flags for the powder histogram. See
Histogram parameters for details.

	clear_refinements()

	Unsets refinement flags for the powder histogram.

	residuals()

	Reports R-factors etc. for the powder histogram (also see get_wR())

	add_back_peak()

	Adds a background peak to the histogram. Also see del_back_peak()
and ref_back_peak().

	fit_fixed_points()

	Fits background to the specified fixed points.

	set_background()

	Sets a background histogram that will be subtracted (point by point) from the current histogram.

	calc_autobkg()

	Estimates the background and sets the fixed background points from that.

	getdata()

	Provides access to the diffraction data associated with the histogram.

	reflections()

	Provides access to the reflection lists for the histogram.

	Export()

	Writes the diffraction data or reflection list into a file

	add_peak()

	Adds a peak to the peak list. Also see Peak Fitting.

	set_peakFlags()

	Sets refinement flags for peaks

	refine_peaks()

	Starts a peak/background fitting cycle, returns refinement results

	Peaks

	Provides access to the peak list data structure

	PeakList

	Provides the peak list parameter values

	Export_peaks()

	Writes the peak parameters to a text file

3.3.6. Class G2Single

A less object in GSASIIscriptable scripts is G2Single, which encapsulate each single crystal diffraction histogram in a project, with commonly used methods:

	method

	Use

	set_refinements()

	Provides a mechanism to set refinement flags for the single crystal histogram. See
Histogram parameters for details.

	clear_refinements()

	Unsets refinement flags for the single crystal powder histogram.

3.3.7. Class G2Image

When working with images, there will be a G2Image object for each image (also see add_image() and images()).

	method

	Use

	Recalibrate()

	Invokes a recalibration fit starting from the current Image Controls calibration coefficients.

	Integrate()

	Invokes an image integration All parameters Image Controls will have previously been set.

	GeneratePixelMask()

	Searches for “bad” pixels creating a pixel mask.

	setControl()

	Set an Image Controls parameter in the current image.

	getControl()

	Return an Image Controls parameter in the current image.

	findControl()

	Get the names of Image Controls parameters.

	loadControls()

	Load controls from a .imctrl file (also see saveControls()).

	loadMasks()

	Load masks from a .immask file.

	setVary()

	Set a refinement flag for Image Controls parameter in the current image.
(Also see getVary())

	setCalibrant()

	Set a calibrant type (or show choices) for the current image.

	setControlFile()

	Set a image to be used as a background/dark/gain map image.

	getControls()

	Returns the Image Controls dict for the current image.

	setControls()

	Updates the Image Controls dict for the current image with specified key/value pairs.

	getMasks()

	Returns the Masks dict for the current image.

	setMasks()

	Updates the Masks dict for the current image with specified key/value pairs.

	IntThetaAzMap()

	Computes the set of 2theta-azimuth mapping matrices to integrate the current image.

	IntMaskMap()

	Computes the masking map for the current image for integration.

	MaskThetaMap()

	Computes the 2theta mapping matrix to determine a pixel mask.

	MaskFrameMask()

	Computes the Frame mask needed to determine a pixel mask.

	TestFastPixelMask()

	Returns True if fast pixel masking is available.

	clearImageCache()

	Clears a saved image from memory, if one is present.

	clearPixelMask()

	Clears a saved Pixel map from the project, if one is present.

3.3.8. Class G2PDF

To work with PDF entries, object G2PDF, encapsulates a PDF entry with methods:

	method

	Use

	export()

	Used to write G(r), etc. as a file

	calculate()

	Computes the PDF using parameters in the object

	optimize()

	Optimizes selected PDF parameters

	set_background()

	Sets the histograms used for sample background, container, etc.

	set_formula()

	Sets the chemical formula for the sample

3.3.9. Class G2SeqRefRes

To work with Sequential Refinement results, object G2SeqRefRes, encapsulates the sequential refinement table with methods:

	method

	Use

	histograms()

	Provides a list of histograms used in the Sequential Refinement

	get_cell_and_esd()

	Returns cell dimensions and standard uncertainties for a phase and histogram from the Sequential Refinement

	get_Variable()

	Retrieves the value and esd for a parameter from a particular histogram in the Sequential Refinement

	get_Covariance()

	Retrieves values and covariance for a set of refined parameters for a particular histogram

3.3.10. Class G2AtomRecord

When working with phases, G2AtomRecord methods provide access to the contents of each atom in a phase. This provides access to atom
values via class “properties” that can be used to get values of much of the atoms associated settings, as below. Most can also be used to set values via
“setter” methods.
See the G2AtomRecord docs and source code.

	method/property

	Use

	label

	Reference as <atom>.label` to get or set label value for atom

	type

	Reference as <atom>.G2AtomRecord.type to get or set the atom type

	element

	Reference as <atom>.G2AtomRecord.element to get the element symbol
associated with an atom (change with <atom>.G2AtomRecord.type,
see type)

	refinement_flags

	Reference class property <atom>.G2AtomRecord.refinement_flags to get or set
the refinement flags associated with an atom

	coordinates

	Reference as <atom>.G2AtomRecord.coordinates to get or set the three coordinates
associated with an atom

	occupancy

	Reference class property <atom>.G2AtomRecord.occupancy to get or set the
site occupancy associated with an atom

	mult

	Reference as <atom>.G2AtomRecord.mult to get an atom site multiplicity
(value cannot be changed in script)

	ranId

	Reference as <atom>.G2AtomRecord.ranId to get an atom random Id number
(value cannot be changed in script)

	adp_flag

	Reference as <atom>.G2AtomRecord.adp_flag to get either ‘U’ or ‘I’
specifying that an atom is set as anisotropic or isotropic
(value cannot be changed in script)

	uiso

	Reference pseudo class variable <atom>.G2AtomRecord.uiso to get
or set the Uiso value associated with an atom

3.4. Refinement parameters

While scripts can be written that setup refinements by changing individual parameters
through calls to the methods associated with objects that wrap each data tree item,
many of these actions can be combined into fairly complex dict structures to conduct refinement
steps. Use of these dicts is required with the GSASIIscriptable Command-line Interface. This section of the
documentation describes these dicts.

3.4.1. Project-level Parameter Dict

As noted below (Refinement parameter types), there are three types of refinement parameters,
which can be accessed individually by the objects that encapsulate individual phases and histograms
but it will often be simplest to create a composite dictionary
that is used at the project-level. A dict is created with keys
“set” and “clear” that can be supplied to set_refinement()
(or do_refinements(), see Refinement recipe below) that will
determine parameter values and will determine which parameters will be refined.

The specific keys and subkeys that can be used are defined in tables
Histogram parameters, Phase parameters and Histogram-and-phase parameters.

Note that optionally a list of histograms and/or phases can be supplied in the call to
set_refinement(), but if not specified, the default is to use all defined
phases and histograms.

As an example:

pardict = {'set': { 'Limits': [0.8, 12.0],
 'Sample Parameters': ['Absorption', 'Contrast', 'DisplaceX'],
 'Background': {'type': 'chebyschev-1', 'refine': True,
 'peaks':[[0,True],[1,1,1]] }},
 'clear': {'Instrument Parameters': ['U', 'V', 'W']}}
my_project.set_refinement(pardict)

3.4.2. Refinement recipe

Building on the Project-level Parameter Dict,
it is possible to specify a sequence of refinement actions as a list of
these dicts and supplying this list
as an argument to do_refinements().

As an example, this code performs the same actions as in the example in the section above:

pardict = {'set': { 'Limits': [0.8, 12.0],
 'Sample Parameters': ['Absorption', 'Contrast', 'DisplaceX'],
 'Background': {'type': 'chebyschev-1', 'refine': True}},
 'clear': {'Instrument Parameters': ['U', 'V', 'W']}}
my_project.do_refinements([pardict])

However, in addition to setting a number of parameters, this example will perform a refinement as well,
after setting the parameters. More than one refinement can be performed by including more
than one dict in the list.

In this example, two refinement steps will be performed:

my_project.do_refinements([pardict,pardict1])

The keys defined in the following table
may be used in a dict supplied to do_refinements(). Note that keys histograms
and phases are used to limit actions to specific sets of parameters within the project.

	key

	explanation

	set

	Specifies a dict with keys and subkeys as described in the
Specifying Refinement Parameters section. Items listed here
will be set to be refined.

	clear

	Specifies a dict, as above for set, except that parameters are
cleared and thus will not be refined.

	once

	Specifies a dict as above for set, except that parameters are
set for the next cycle of refinement and are cleared once the
refinement step is completed.

	skip

	Normally, once parameters are processed with a set/clear/once
action(s), a refinement is started. If skip is defined as True
(or any other value) the refinement step is not performed.

	output

	If a file name is specified for output is will be used to save
the current refinement.

	histograms

	Should contain a list of histogram(s) to be used for the
set/clear/once action(s) on Histogram parameters or
Histogram-and-phase parameters. Note that this will be
ignored for Phase parameters. Histograms may be
specified as a list of strings [(‘PWDR …’),…], indices
[0,1,2] or as list of objects [hist1, hist2].

	phases

	Should contain a list of phase(s) to be used for the
set/clear/once action(s) on Phase parameters or
Histogram-and-phase parameters. Note that this will be
ignored for Histogram parameters.
Phases may be specified as a list of strings
[(‘Phase name’),…], indices [0,1,2] or as list of objects
[phase0, phase2].

	call

	Specifies a function to call after a refinement is completed.
The value supplied can be the object (typically a function)
that will be called or a string that will evaluate (in the
namespace inside
iter_refinements() where
self references the project.)
Nothing is called if this is not specified.

	callargs

	Provides a list of arguments that will be passed to the function
in call (if any). If call is defined and callargs is not, the
current <tt>G2Project</tt> is passed as a single argument.

An example that performs a series of refinement steps follows:

reflist = [
 {"set": { "Limits": { "low": 0.7 },
 "Background": { "no. coeffs": 3,
 "refine": True }}},
 {"set": { "LeBail": True,
 "Cell": True }},
 {"set": { "Sample Parameters": ["DisplaceX"]}},
 {"set": { "Instrument Parameters": ["U", "V", "W", "X", "Y"]}},
 {"set": { "Mustrain": { "type": "uniaxial",
 "refine": "equatorial",
 "direction": [0, 0, 1]}}},
 {"set": { "Mustrain": { "type": "uniaxial",
 "refine": "axial"}}},
 {"clear": { "LeBail": True},
 "set": { "Atoms": { "Mn": "X" }}},
 {"set": { "Atoms": { "O1": "X", "O2": "X" }}},]
my_project.do_refinements(reflist)

In this example, a separate refinement step will be performed for each dict in the list. The keyword
“skip” can be used to specify a dict that should not include a refinement.
Note that in the second from last refinement step, parameters are both set and cleared.

3.4.3. Refinement parameter types

Note that parameters and refinement flags used in GSAS-II fall into three classes:

	Histogram: There will be a set of these for each dataset loaded into a
project file. The parameters available depend on the type of histogram
(Bragg-Brentano, Single-Crystal, TOF,…). Typical Histogram parameters
include the overall scale factor, background, instrument and sample parameters;
see the Histogram parameters table for a list of the histogram
parameters where access has been provided.

	Phase: There will be a set of these for each phase loaded into a
project file. While some parameters are found in all types of phases,
others are only found in certain types (modulated, magnetic, protein…).
Typical phase parameters include unit cell lengths and atomic positions; see the
Phase parameters table for a list of the phase
parameters where access has been provided.

	Histogram-and-phase (HAP): There is a set of these for every histogram
that is associated with each phase, so that if there are N phases and M
histograms, there can be N*M total sets of “HAP” parameters sets (fewer if all
histograms are not linked to all phases.) Typical HAP parameters include the
phase fractions, sample microstrain and crystallite size broadening terms,
hydrostatic strain perturbations of the unit cell and preferred orientation
values.
See the Histogram-and-phase parameters table for the HAP parameters where access has
been provided.

3.5. Specifying Refinement Parameters

Refinement parameter values and flags to turn refinement on and off are specified within dictionaries,
where the details of these dicts are organized depends on the
type of parameter (see Refinement parameter types), with a different set
of keys (as described below) for each of the three types of parameters.

3.5.1. Histogram parameters

This table describes the dictionaries supplied to set_refinements()
and clear_refinements(). As an example,

hist.set_refinements({"Background": {"no. coeffs": 3, "refine": True},
 "Sample Parameters": ["Scale"],
 "Limits": [10000, 40000]})

With do_refinements(), these parameters should be placed inside a dict with a key
set, clear, or once. Values will be set for all histograms, unless the histograms
key is used to define specific histograms. As an example:

gsas_proj.do_refinements([
 {'set': {
 'Background': {'no. coeffs': 3, 'refine': True},
 'Sample Parameters': ['Scale'],
 'Limits': [10000, 40000]},
 'histograms': [1,2]}
])

Note that below in the Instrument Parameters section,
related profile parameters (such as U and V) are grouped together but
separated by commas to save space in the table.

	key

	subkey

	explanation

	Limits

	
	The range of 2-theta (degrees) or TOF (in
microsec) range of values to use. Can
be either a dictionary of ‘low’ and/or ‘high’,
or a list of 2 items [low, high]
Available for powder histograms only.

	

	low

	Sets the low limit

	

	high

	Sets the high limit

	Sample Parameters

	
	Should be provided as a list of subkeys
to set or clear refinement flags for,
e.g. [‘DisplaceX’, ‘Scale’]
Available for powder histograms only.

	

	Absorption

	

	

	Contrast

	

	

	DisplaceX

	Sample displacement along the X direction

	

	DisplaceY

	Sample displacement along the Y direction

	

	Scale

	Histogram Scale factor

	Background

	
	Sample background. Value will be a dict or
a boolean. If True or False, the refine
parameter for background is set to that.
Available for powder histograms only.
Note that background peaks are not handled
via this; see
ref_back_peak()
instead. When value is a dict,
supply any of the following keys:

	

	type

	The background model, e.g. ‘chebyschev-1’

	

	refine

	The value of the refine flag, boolean

	

	‘no. coeffs’

	Number of coefficients to use, integer

	

	coeffs

	List of floats, literal values for background

	

	FixedPoints

	List of (2-theta, intensity) values for fixed points

	

	‘fit fixed points’

	If True, triggers a fit to the fixed points to
be calculated. It is calculated when this key is
detected, regardless of calls to refine.

	

	peaks

	Specifies a set of flags for refining
background peaks as a nested list. There may
be an item for each defined background peak
(or fewer) and each item is a list with the flag
values for pos,int,sig & gam (fewer than 4 values
are allowed).

	Instrument Parameters

	
	As in Sample Parameters, provide as a list of
subkeys to set or clear refinement flags,
e.g. [‘X’, ‘Y’, ‘Zero’, ‘SH/L’]
Available for powder histograms only.

	

	U, V, W

	Gaussian peak profile terms

	

	X, Y, Z

	Lorentzian peak profile terms

	

	alpha, beta-0,
beta-1, beta-q,

	TOF profile terms

	

	sig-0, sig-1,
sig-2, sig-q

	TOF profile terms

	

	difA, difB, difC

	TOF Calibration constants

	

	Zero

	Zero shift

	

	SH/L

	Finger-Cox-Jephcoat low-angle peak asymmetry

	

	Polariz.

	Polarization parameter

	

	Lam

	Lambda, the incident wavelength

	Single xtal

	
	As in Sample Parameters, provide as a list of
subkeys to set or clear refinement flags,
e.g. […].
Available for single crystal histograms only.

	

	Scale

	Single crystal scale factor

	

	BabA, BabU

	Babinet A & U parameters

	

	Eg, Es, Ep

	Extinction parameters

	

	Flack

	Flack absolute configuration parameter

3.5.2. Phase parameters

This table describes the dictionaries supplied to set_refinements()
and clear_refinements(). With do_refinements(),
these parameters should be placed inside a dict with a key
set, clear, or once. Values will be set for all phases, unless the phases
key is used to define specific phase(s).

	key

	explanation

	Cell

	Whether or not to refine the unit cell.

	Atoms

	Dictionary of atoms and refinement flags.
Each key should be an atom label, e.g.
‘O3’, ‘Mn5’, and each value should be
a string defining what values to refine.
Values can be any combination of ‘F’
for site fraction, ‘X’ for position,
and ‘U’ for Debye-Waller factor

	LeBail

	Enables LeBail intensity extraction.

3.5.3. Histogram-and-phase parameters

This table describes the dictionaries supplied to set_HAP_refinements()
and clear_HAP_refinements(). When supplied to
do_refinements(), these parameters should be placed inside a dict with a key
set, clear, or once. Values will be set for all histograms used in each phase,
unless the histograms and phases keys are used to define specific phases and histograms.

	key

	subkey

	explanation

	Babinet

	
	Should be a list of the following
subkeys. If not, assumes both
BabA and BabU

	

	BabA

	

	

	BabU

	

	Extinction

	
	Boolean, True to refine.

	HStrain

	
	Boolean or list/tuple, True to refine all
appropriate Dij terms or False
to not refine any. If a list/tuple, will
be a set of True & False values for each
Dij term; number of items must
match number of terms.

	Mustrain

	
	

	

	type

	Mustrain model. One of ‘isotropic’,
‘uniaxial’, or ‘generalized’. This should
be specified to change the model.

	

	direction

	For uniaxial only. A list of three
integers,
the [hkl] direction of the axis.

	

	refine

	Usually boolean, set to True to refine.
or False to clear.
For uniaxial model, can specify a value
of ‘axial’ or ‘equatorial’ to set that flag
to True or a single
boolean sets both axial and equatorial.

	Size

	
	

	

	type

	Size broadening model. One of ‘isotropic’,
‘uniaxial’, or ‘ellipsoid’. This should
be specified to change from the current.

	

	direction

	For uniaxial only. A list of three
integers,
the [hkl] direction of the axis.

	

	refine

	Boolean, True to refine.

	

	value

	float, size value in microns

	Pref.Ori.

	
	Boolean, True to refine

	Show

	
	Boolean, True to refine

	Use

	
	Boolean, True to refine

	Scale

	
	Phase fraction; Boolean, True to refine

3.5.4. Histogram/Phase objects

Each phase and powder histogram in a G2Project object has an associated
object. Parameters within each individual object can be turned on and off by calling
set_refinements() or clear_refinements()
for histogram parameters;
set_refinements() or clear_refinements()
for phase parameters; and set_HAP_refinements() or
clear_HAP_refinements(). As an example, if some_histogram is a histogram object (of type G2PwdrData), use this to set parameters in that histogram:

params = { 'Limits': [0.8, 12.0],
 'Sample Parameters': ['Absorption', 'Contrast', 'DisplaceX'],
 'Background': {'type': 'chebyschev-1', 'refine': True}}
some_histogram.set_refinements(params)

Likewise to turn refinement flags on, use code such as this:

params = { 'Instrument Parameters': ['U', 'V', 'W']}
some_histogram.set_refinements(params)

and to turn these refinement flags, off use this (Note that the
.clear_refinements() methods will usually will turn off refinement even
if a refinement parameter is set in the dict to True.):

params = { 'Instrument Parameters': ['U', 'V', 'W']}
some_histogram.clear_refinements(params)

For phase parameters, use code such as this:

params = { 'LeBail': True, 'Cell': True,
 'Atoms': { 'Mn1': 'X',
 'O3': 'XU',
 'V4': 'FXU'}}
some_histogram.set_refinements(params)

and here is an example for HAP parameters:

params = { 'Babinet': 'BabA',
 'Extinction': True,
 'Mustrain': { 'type': 'uniaxial',
 'direction': [0, 0, 1],
 'refine': True}}
some_phase.set_HAP_refinements(params)

Note that the parameters must match the object type and method (phase vs. histogram vs. HAP).

3.6. Access to other parameter settings

There are several hundred different types of values that can be stored in a
GSAS-II project (.gpx) file. All can be changed from the GUI but only a
subset have direct mechanism implemented for change from the GSASIIscriptable
API. In practice all parameters in a .gpx file can be edited via scripting,
but sometimes determining what should be set to implement a parameter
change can be complex.
Several routines, getHAPentryList(),
getPhaseEntryList() and getHistEntryList()
(and their related get…Value and set.Value entries),
provide a mechanism to discover what the GUI is changing inside a .gpx file.

As an example, a user in changing the data type for a histogram from Debye-Scherrer
mode to Bragg-Brentano. This capability is not directly exposed in the API. To
find out what changes when the histogram type is changed we can create a short script
that displays the contents of all the histogram settings:

from __future__ import division, print_function
import os,sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII')
import GSASIIscriptable as G2sc
gpx = G2sc.G2Project('/tmp/test.gpx')
h = gpx.histograms()[0]
for h in h.getHistEntryList():
 print(h)

This can be run with a command like this:

python test.py > before.txt

(This will create file before.txt, which will contain hundreds of lines.)

At this point open the project file, test.gpx in the GSAS-II GUI and
change in Histogram/Sample Parameters the diffractometer type from Debye-Scherrer
mode to Bragg-Brentano and then save the file.

Rerun the previous script creating a new file:

python test.py > after.txt

Finally look for the differences between files before.txt and after.txt using a tool
such as diff (on Linux/OS X) or fc (in Windows).

in Windows:

Z:\>fc before.txt after.txt
Comparing files before.txt and after.txt
***** before.txt
 fill_value = 1e+20)
, 'PWDR Co_PCP_Act_d900-00030.fxye Bank 1', 'PWDR Co_PCP_Act_d900-00030.fxye Ban
k 1'])
(['Comments'], <class 'list'>, ['Co_PCP_Act_d900-00030.tif #0001 Azm= 180.00'])
***** AFTER.TXT
 fill_value = 1e+20)
, 'PWDR Co_PCP_Act_d900-00030.fxye Bank 1', 'PWDR Co_PCP_Act_d900-00030.fxye Ban
k 1', 'PWDR Co_PCP_Act_d900-00030.fxye Bank 1']

(['Comments'], <class 'list'>, ['Co_PCP_Act_d900-00030.tif #0001 Azm= 180.00'])

***** before.txt
(['Sample Parameters', 'Scale'], <class 'list'>, [1.276313196832068, True])
(['Sample Parameters', 'Type'], <class 'str'>, 'Debye-Scherrer')
(['Sample Parameters', 'Absorption'], <class 'list'>, [0.0, False])
***** AFTER.TXT
(['Sample Parameters', 'Scale'], <class 'list'>, [1.276313196832068, True])
(['Sample Parameters', 'Type'], <class 'str'>, 'Bragg-Brentano')
(['Sample Parameters', 'Absorption'], <class 'list'>, [0.0, False])

in Linux/Mac:

bht14: toby$ diff before.txt after.txt
103c103
< , 'PWDR Co_PCP_Act_d900-00030.fxye Bank 1', 'PWDR Co_PCP_Act_d900-00030.fxye Bank 1'])

> , 'PWDR Co_PCP_Act_d900-00030.fxye Bank 1', 'PWDR Co_PCP_Act_d900-00030.fxye Bank 1', 'PWDR Co_PCP_Act_d900-00030.fxye Bank 1'])
111c111
< (['Sample Parameters', 'Type'], <class 'str'>, 'Debye-Scherrer')

> (['Sample Parameters', 'Type'], <class 'str'>, 'Bragg-Brentano')

From this we can see there are two changes that took place. One is fairly obscure,
where the histogram name is added to a list, which can be ignored, but the second change
occurs in a straight-forward way and we discover that a simple call:

h.setHistEntryValue(['Sample Parameters', 'Type'], 'Bragg-Brentano')

can be used to change the histogram type.

3.7. Code Examples

Contents for Scripting Examples

	Shortcut for Scripting Access

	Peak Fitting

	Pattern Simulation

	Simple Refinement

	Sequential Refinement

	Image Processing

	Image Calibration

	Optimized Image Integration

	Multicore Image Integration

	Histogram Export

	Automatic Background

3.7.1. Shortcut for Scripting Access

As is seen in a number of the code examples, the location where GSAS-II is
specified in the GSAS-II script using commands such as

import sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII') # needed to "find" GSAS-II modules
import GSASIIscriptable as G2sc

An alternative to this is to “install” the current GSAS-II installation into the current
Python interpreter. Once this has been done a single time, this single command can be used to replace
the three commands listed above for all future uses of GSASIIscripting:

import G2script as G2sc

There are two ways this installation can be done. The most easy way is to invoke the
“Install GSASIIscriptable shortcut” command in the GSAS-II GUI
File menu. Alternatively it can be accomplished from within GSASIIscriptable
using these commands:

import sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII') # update this for your installation
import GSASIIscriptable as G2sc
G2sc.installScriptingShortcut()

An even simpler way to do this is from the command-line, from the GSAS-II directory.
A full path for Python is only needed if if the Python to be used with GSAS-II is not in the
path.

terrier:toby> cd /home/beams1/TOBY/gsas2full/GSASII/
terrier:toby> /mypath/bin/python -c "import GSASIIscriptable as G2sc; G2sc.installScriptingShortcut()"
GSAS-II binary directory: /home/beams1/TOBY/gsas2full/GSASII/bindist
Created file /home/beams1/TOBY/gsas2full/lib/python3.10/site-packages/G2script.py
setting up GSASIIscriptable from /home/beams1/TOBY/gsas2full/GSASII
success creating /home/beams1/TOBY/gsas2full/lib/python3.10/site-packages/G2script.py

Note the shortcut only installs use of GSAS-II with the current Python
installation. If more than one Python installation will be used with GSAS-II
(for example because different conda environments are used), a shortcut
should be created from within each Python environment.

If more than one GSAS-II installation will be used with a Python installation,
a shortcut can only be used with one of them.

3.7.2. Peak Fitting

Peak refinement is performed with routines
add_peak(), set_peakFlags() and
refine_peaks(). Method Export_peaks() and
properties Peaks and PeakList
provide ways to access the results. Note that when peak parameters are
refined with refine_peaks(), the background may also
be refined. Use set_refinements() to change background
settings and the range of data used in the fit. See below for an example
peak refinement script, where the data files are taken from the
“Rietveld refinement with CuKa lab Bragg-Brentano powder data” tutorial
(in https://advancedphotonsource.github.io/GSAS-II-tutorials/LabData/data/).

from __future__ import division, print_function
import os,sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII') # needed to "find" GSAS-II modules
import GSASIIscriptable as G2sc
datadir = os.path.expanduser("~/Scratch/peakfit")
PathWrap = lambda fil: os.path.join(datadir,fil)
gpx = G2sc.G2Project(newgpx=PathWrap('pkfit.gpx'))
hist = gpx.add_powder_histogram(PathWrap('FAP.XRA'), PathWrap('INST_XRY.PRM'),
 fmthint='GSAS powder')
hist.set_refinements({'Limits': [16.,24.],
 'Background': {"no. coeffs": 2,'type': 'chebyschev-1', 'refine': True}
 })
peak1 = hist.add_peak(1, ttheta=16.8)
peak2 = hist.add_peak(1, ttheta=18.9)
peak3 = hist.add_peak(1, ttheta=21.8)
peak4 = hist.add_peak(1, ttheta=22.9)
hist.set_peakFlags(area=True)
hist.refine_peaks()
hist.set_peakFlags(area=True,pos=True)
hist.refine_peaks()
hist.set_peakFlags(area=True, pos=True, sig=True, gam=True)
res = hist.refine_peaks()
print('peak positions: ',[i[0] for i in hist.PeakList])
for i in range(len(hist.Peaks['peaks'])):
 print('peak',i,'pos=',hist.Peaks['peaks'][i][0],'sig=',hist.Peaks['sigDict']['pos'+str(i)])
hist.Export_peaks('pkfit.txt')
#gpx.save() # gpx file is not written without this

3.7.3. Pattern Simulation

This shows two examples where a structure is read from a CIF, a
pattern is computed using a instrument parameter file to specify the
probe type (neutrons here) and wavelength.

The first example uses a CW neutron instrument parameter file.
The pattern is computed over a 2θ range of 5 to 120 degrees
with 1000 points.
The pattern and reflection list are written into files.
Data files are found in the
Scripting Tutorial [https://advancedphotonsource.github.io/GSAS-II-tutorials/PythonScript/data/].

import os,sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII')
import GSASIIscriptable as G2sc
datadir = "/Users/toby/software/G2/Tutorials/PythonScript/data"
PathWrap = lambda fil: os.path.join(datadir,fil)
gpx = G2sc.G2Project(newgpx='PbSO4sim.gpx') # create a project
phase0 = gpx.add_phase(PathWrap("PbSO4-Wyckoff.cif"),
 phasename="PbSO4",fmthint='CIF') # add a phase to the project
add a simulated histogram and link it to the previous phase(s)
hist1 = gpx.add_simulated_powder_histogram("PbSO4 simulation",
 PathWrap("inst_d1a.prm"),5.,120.,Npoints=1000,
 phases=gpx.phases(),scale=500000.)
gpx.do_refinements() # calculate pattern
gpx.save()
save results
gpx.histogram(0).Export('PbSO4data','.csv','hist') # data
gpx.histogram(0).Export('PbSO4refl','.csv','refl') # reflections

This example uses bank#2 from a TOF neutron instrument parameter file.
The pattern is computed over a TOF range of 14 to 35 milliseconds with
the default of 2500 points.
This uses the same CIF as in the example before, but the instrument is found in the
TOF-CW Joint Refinement Tutorial [https://advancedphotonsource.github.io/GSAS-II-tutorials/TOF-CWJointRefinement/data]
tutorial.

import os,sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII')
import GSASIIscriptable as G2sc
cifdir = "/Users/toby/software/G2/Tutorials/PythonScript/data"
datadir = "/Users/toby/software/G2/Tutorials/TOF-CW Joint Refinement/data"
gpx = G2sc.G2Project(newgpx='/tmp/PbSO4simT.gpx') # create a project
phase0 = gpx.add_phase(os.path.join(cifdir,"PbSO4-Wyckoff.cif"),
 phasename="PbSO4",fmthint='CIF') # add a phase to the project
hist1 = gpx.add_simulated_powder_histogram("PbSO4 simulation",
 os.path.join(datadir,"POWGEN_1066.instprm"),14.,35.,
 phases=gpx.phases(),ibank=2)
gpx.do_refinements([{}])
gpx.save()

3.7.4. Simple Refinement

GSASIIscriptable can be used to setup and perform simple refinements.
This example reads in an existing project (.gpx) file, adds a background
peak, changes some refinement flags and performs a refinement.

from __future__ import division, print_function
import os,sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII') # needed to "find" GSAS-II modules
import GSASIIscriptable as G2sc
datadir = "/Users/Scratch/"
gpx = G2sc.G2Project(os.path.join(datadir,'test2.gpx'))
gpx.histogram(0).add_back_peak(4.5,30000,5000,0)
pardict = {'set': {'Sample Parameters': ['Absorption', 'Contrast', 'DisplaceX'],
 'Background': {'type': 'chebyschev-1', 'refine': True,
 'peaks':[[0,True]]}}}
gpx.set_refinement(pardict)

3.7.5. Sequential Refinement

GSASIIscriptable can be used to setup and perform sequential refinements. This example script
is used to take the single-dataset fit at the end of Step 1 of the
Sequential Refinement tutorial [https://advancedphotonsource.github.io/GSAS-II-tutorials/SeqRefine/SequentialTutorial.htm]
and turn on and off refinement flags, add histograms and setup the sequential fit, which is then run:

import os,sys,glob
sys.path.insert(0,'/Users/toby/software/G2/GSASII')
import GSASIIscriptable as G2sc
datadir = os.path.expanduser("~/Scratch/SeqTut2019Mar")
PathWrap = lambda fil: os.path.join(datadir,fil)
load and rename project
gpx = G2sc.G2Project(PathWrap('7Konly.gpx'))
gpx.save(PathWrap('SeqRef.gpx'))
turn off some variables; turn on Dijs
for p in gpx.phases():
 p.set_refinements({"Cell": False})
gpx.phase(0).set_HAP_refinements(
 {'Scale': False,
 "Size": {'type':'isotropic', 'refine': False},
 "Mustrain": {'type':'uniaxial', 'refine': False},
 "HStrain":True,})
gpx.phase(1).set_HAP_refinements({'Scale': False})
gpx.histogram(0).clear_refinements({'Background':False,
 'Sample Parameters':['DisplaceX'],})
gpx.histogram(0).ref_back_peak(0,[])
gpx.phase(1).set_HAP_refinements({"HStrain":(1,1,1,0)})
for fil in sorted(glob.glob(PathWrap('*.fxye'))): # load in remaining fxye files
 if '00' in fil: continue
 gpx.add_powder_histogram(fil, PathWrap('OH_00.prm'), fmthint="GSAS powder",phases='all')
copy HAP values, background, instrument params. & limits, not sample params.
gpx.copyHistParms(0,'all',['b','i','l'])
for p in gpx.phases(): p.copyHAPvalues(0,'all')
setup and launch sequential fit
gpx.set_Controls('sequential',gpx.histograms())
gpx.set_Controls('cycles',10)
gpx.set_Controls('seqCopy',True)
gpx.refine()

3.7.6. Image Processing

A sample script where an image is read, assigned calibration values from a file
and then integrated follows.
The data files are found in the
Scripting Tutorial [https://advancedphotonsource.github.io/GSAS-II-tutorials/PythonScript/data/].

import os,sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII')
import GSASIIscriptable as G2sc
datadir = "/tmp"
PathWrap = lambda fil: os.path.join(datadir,fil)

gpx = G2sc.G2Project(newgpx=PathWrap('inttest.gpx'))
imlst = gpx.add_image(PathWrap('Si_free_dc800_1-00000.tif'),fmthint="TIF")
imlst[0].loadControls(PathWrap('Si_free_dc800_1-00000.imctrl'))
pwdrList = imlst[0].Integrate()
gpx.save()

This example shows a computation similar to what is done in tutorial
Area Detector Calibration with Multiple Distances [https://advancedphotonsource.github.io/GSAS-II-tutorials/DeterminingWavelength/DeterminingWavelength.html]

import os,sys,glob
sys.path.insert(0,'/Users/toby/software/G2/GSASII')
import GSASIIscriptable as G2sc
PathWrap = lambda fil: os.path.join(
 "/Users/toby/wp/Active/MultidistanceCalibration/multimg",
 fil)

gpx = G2sc.G2Project(newgpx='/tmp/img.gpx')
for f in glob.glob(PathWrap('*.tif')):
 im = gpx.add_image(f,fmthint="TIF")
image parameter settings
defImgVals = {'wavelength': 0.24152, 'center': [206., 205.],
 'pixLimit': 2, 'cutoff': 5.0, 'DetDepth': 0.055,'calibdmin': 1.,}
set controls and vary options, then fit
for img in gpx.images():
 img.setCalibrant('Si SRM640c')
 img.setVary('*',False)
 img.setVary(['det-X', 'det-Y', 'phi', 'tilt', 'wave'], True)
 img.setControls(defImgVals)
 img.Recalibrate()
 img.Recalibrate() # 2nd run better insures convergence
gpx.save()
make dict of images for sorting
images = {img.getControl('setdist'):img for img in gpx.images()}
show values
for key in sorted(images.keys()):
 img = images[key]
 c = img.getControls()
 print(c['distance'],c['wavelength'])

3.7.7. Image Calibration

This example performs a number of cycles of constrained fitting.
A project is created with the images found in a directory, setting initial
parameters as the images are read. The initial values
for the calibration are not very good, so a Recalibrate() is done
to quickly improve the fit. Once that is done, a fit of all images is performed
where the wavelength, an offset and detector orientation are constrained to
be the same for all images. The detector penetration correction is then added.
Note that as the calibration values improve, the algorithm is able to find more
points on diffraction rings to use for calibration and the number of “ring picks”
increase. The calibration is repeated until that stops increasing significantly (<10%).
Detector control files are then created.
The files used for this exercise are found in the
Area Detector Calibration Tutorial [https://advancedphotonsource.github.io/GSAS-II-tutorials/DeterminingWavelength/data/]
(see
Area Detector Calibration with Multiple Distances [https://advancedphotonsource.github.io/GSAS-II-tutorials/DeterminingWavelength/DeterminingWavelength.html]).

import os,sys,glob
sys.path.insert(0,'/Users/toby/software/G2/GSASII')
import GSASIIscriptable as G2sc
PathWrap = lambda fil: os.path.join(
 "/Users/toby/wp/Active/MultidistanceCalibration/multimg",
 fil)

gpx = G2sc.G2Project(newgpx='/tmp/calib.gpx')
for f in glob.glob(PathWrap('*.tif')):
 im = gpx.add_image(f,fmthint="TIF")
starting image parameter settings
defImgVals = {'wavelength': 0.240, 'center': [206., 205.],
 'pixLimit': 2, 'cutoff': 5.0, 'DetDepth': 0.03,'calibdmin': 0.5,}
set controls and vary options, then initial fit
for img in gpx.images():
 img.setCalibrant('Si SRM640c')
 img.setVary('*',False)
 img.setVary(['det-X', 'det-Y', 'phi', 'tilt', 'wave'], True)
 img.setControls(defImgVals)
 if img.getControl('setdist') > 900:
 img.setControls({'calibdmin': 1.,})
 img.Recalibrate()
G2sc.SetPrintLevel('warn') # cut down on output
result,covData = gpx.imageMultiDistCalib()
print('1st global fit: initial ring picks',covData['obs'])
print({i:result[i] for i in result if '-' not in i})
add parameter to all images & refit multiple times
for img in gpx.images(): img.setVary('dep',True)
ringpicks = covData['obs']
delta = ringpicks
while delta > ringpicks/10:
 result,covData = gpx.imageMultiDistCalib(verbose=False)
 delta = covData['obs'] - ringpicks
 print('ring picks went from',ringpicks,'to',covData['obs'])
 print({i:result[i] for i in result if '-' not in i})
 ringpicks = covData['obs']
once more for good measure & printout
result,covData = gpx.imageMultiDistCalib(verbose=True)
create image control files
for img in gpx.images():
 img.saveControls(os.path.splitext(img.name)[0]+'.imctrl')
gpx.save()

3.7.8. Optimized Image Integration

This example shows how image integration, including pixel masking of outliers,
can be accomplished for a series of images where the calibration and
other masking (Frame, Spots, etc) are the same for all images. This code has been optimized
significantly so that computations are cached and are not repeated where possible. For one
set of test data, processing of the first image takes ~5 seconds, but processing of subsequent
takes on the order of 0.7 sec.

This code uses an import G2script as G2sc statement to access GSASIIscriptable
without referencing the GSAS-II installation directory. This requires installing a reference to
the GSAS-II location into the current a Python installation, which can be done from the GUI
or with scripting commands, as is discussed in Shortcut for Scripting Access. Here
function installScriptingShortcut() was used to create
the G2script module. That code has been retained here as comments to show what was done.

To simplify use of this script, it is assumed that the script will be placed in the same
directory as where the data files will be collected. Other customization is done
in variables at the beginning of the code. Note that the beamline where these data are collected
opens the output .tif files before the data collection for that image is complete. Once the .metadata
file has been created, the image may be read.

	Processing progresses as follows:
	
	Once a set of images are found, a project is created. This is never written and will be deleted after the images are processed.

	For each image file, routine add_image() is used to add image(s) from that file to the project. The .tif format can only hold one image, but others can have more than one.

	When the first image is processed, calibration and mask info is read; a number of computations are performed and cached.

	For subsequent images cached information is used.

	Pixel masking is performed in GeneratePixelMask() and the mask is saved into the image.

	Image integration is performed in Integrate().

	Note that multiple powder patterns could be created from one image, so creation of data files is done in a loop with Export().

	To reduce memory demands, cached versions of the Pixel map and the Image are deleted and the image file is moved to a separate directory so note that it has been processed.

	The project (.gpx file) is deleted and recreated periodically so that the memory footprint for this script does not grow.

The speed of this code will depend on many things, but the number of pixels in the
image is primary, as well as CPU speed. With ~9 Mb images, I have seen average times in the range of 0.7 to 0.9 sec/image, after the first image is processed and the cached arrays are computed. With the Apple M1 chip the time is closer to 0.6 sec/image.
There is also a possible tuning parameter that may change speed based on the speed of the CPU vs. memory
constraints in variable GSASIIscriptable.blkSize. This value should be a power of two and defaults to
128. You might find that a larger or smaller value will improve performance for you.

import os,glob,time,shutil

Create G2script: do this once
#import sys
#sys.path.insert(0,'/Users/toby/software/G2/GSASII') # update with your install loc
#import GSASIIscriptable as G2sc
#G2sc.installScriptingShortcut()
###

import G2script as G2sc
G2sc.blkSize = 2**8 # computer-dependent tuning parameter
G2sc.SetPrintLevel('warn') # reduces output

cache = {} # place to save intermediate computations
define location & names of files
dataLoc = os.path.abspath(os.path.split(__file__)[0]) # data in location of this file
PathWrap = lambda fil: os.path.join(dataLoc,fil) # convenience function for file paths
imgctrl = PathWrap('Si_ch3_d700-00000.imctrl')
imgmask = PathWrap('Si_ch3_d700-00000.immask')
globPattern = PathWrap("*_d700-*.tif")

def wait_for_metadata(tifname):
 '''A .tif file is created before it can be read. Wait for the
 metadata file to be created before trying to read both.
 '''
 while not os.path.exists(tifname + '.metadata'):
 time.sleep(0.05)

make a subfolder to store integrated images & integrated patterns
pathImg = os.path.join(dataLoc,'img')
if not os.path.exists(pathImg): os.mkdir(pathImg)
pathxye = os.path.join(dataLoc,'xye')
if not os.path.exists(pathxye): os.mkdir(pathxye)

while True: # Loop will never end, stop with ctrl+C
 tiflist = sorted(glob.glob(globPattern),key=lambda x: os.path.getctime(x)) # get images sorted by creation time, oldest 1st
 if not tiflist:
 time.sleep(0.1)
 continue
 gpx = G2sc.G2Project(newgpx=PathWrap('integration.gpx')) # temporary use
 for tifname in tiflist:
 starttime = time.time()
 wait_for_metadata(tifname)
 for img in gpx.add_image(tifname,fmthint="TIF",cacheImage=True): # loop unneeded for TIF (1 image/file)
 if not cache: # load & compute controls & 2theta values once
 img.loadControls(imgctrl) # set controls/calibrations/masks
 img.loadMasks(imgmask)
 cache['Image Controls'] = img.getControls() # save controls & masks contents for quick reload
 cache['Masks'] = img.getMasks()
 cache['intMaskMap'] = img.IntMaskMap() # calc mask & TA arrays to save for integrations
 cache['intTAmap'] = img.IntThetaAzMap()
 cache['FrameMask'] = img.MaskFrameMask() # calc Frame mask & T array to save for Pixel masking
 cache['maskTmap'] = img.MaskThetaMap()
 else:
 img.setControls(cache['Image Controls'])
 img.setMasks(cache['Masks'],True) # True: reset threshold masks
 img.GeneratePixelMask(esdMul=3,ThetaMap=cache['maskTmap'],FrameMask=cache['FrameMask'])
 for pwdr in img.Integrate(MaskMap=cache['intMaskMap'],ThetaAzimMap=cache['intTAmap']):
 pwdr.Export(os.path.join(pathxye,os.path.split(tifname)[1]),'.xye') # '.tif in name ignored
 img.clearImageCache() # save some space
 img.clearPixelMask()
 shutil.move(tifname, pathImg) # move file after integration so that it is not searchable
 shutil.move(tifname + '.metadata', pathImg)
 print('*=== processing complete, time=',time.time()-starttime,'sec\n')
 del gpx

3.7.9. Multicore Image Integration

The previous example (Optimized Image Integration) can be accelerated even further
on a multicore computer using the following script. In this example,
the image integration is moved to a function, integrate_tif, that accepts
a filename to integrate. Note that with the multiprocessing module is used,
the script will be read on each core that will be used, but only on the primary
(controller) process will this __name__ == '__main__' be True.
Thus the code following the if statement runs on the primary process.
The primary process uses the mp.Pool() statement to create a set of
secondary (worker) processes that are intended to run on other cores.
The primary process locates .tif files, if the corresponding
.tif.metadata is also found, both are moved to a separate directory where they
will be processed in a secondary process. When the secondary process starts,
the script is imported and then integrate_tif is called with the name of the
image file from the primary process. The integrate_tif routine
will initially have an empty cache and thus the code preceeded by
“load & compute controls & 2theta values” will be computed once for every
secondary process, which should be on an independent core. The size of the pool
determines how many images will be processed simultaneously.

The script as given below uses the first argument on the command
line to specify the number of cores to be used, where 0 is used to
mean run integrate_tif directly rather than through a pool. This
facilitates timing comparisons.
This code seems to have a maximum speed using slightly less than the
total number of available cores and does benefit partially from
hyperthreading. A two- to three-fold speedup is seen with four cores and a
six-fold speedup has been seen with 16 cores.

import os,sys,glob,time,shutil
scriptstart = time.time()

if len(sys.argv) >= 2:
 nodes = int(sys.argv[1])
else:
 nodes = 4

if nodes == 0:
 print('no multiprocessing')
else:
 print(f'multiprocessing with {nodes} cores')

import G2script as G2sc
G2sc.blkSize = 2**8 # computer-dependent tuning parameter
#G2sc.SetPrintLevel('warn')

cache = {} # place to save intermediate computations

define location & names of files
dataLoc = '/dataserv/inttest' # images found here
globPattern = os.path.join(dataLoc,"*_d700-*.tif")
calibLoc = os.path.abspath(os.path.split(__file__)[0]) # calib in location of this file
imgctrl = os.path.join(calibLoc,'Si_ch3_d700-00000.imctrl')
imgmask = os.path.join(calibLoc,'Si_ch3_d700-00000.immask')
locations to put processed files
pathImg = os.path.join(dataLoc,'img')
pathxye = os.path.join(dataLoc,'xye')

def integrate_tif(tifname):
 starttime = time.time()
 gpx = G2sc.G2Project(newgpx='integration.gpx') # temporary use, not written
 for img in gpx.add_image(tifname,fmthint="TIF",cacheImage=True): # loop unneeded for TIF (1 image/file)
 img.setControl('pixelSize',[150,150])
 if not cache: # load & compute controls & 2theta values once
 print('Initializing cache for',tifname)
 img.loadControls(imgctrl) # set controls/calibrations/masks
 img.loadMasks(imgmask)
 cache['Image Controls'] = img.getControls() # save file contents for quick reload
 cache['Masks'] = img.getMasks()
 cache['intMaskMap'] = img.IntMaskMap() # calc mask & TA arrays to save for integrations
 cache['intTAmap'] = img.IntThetaAzMap()
 cache['FrameMask'] = img.MaskFrameMask() # calc Frame mask & T array to save for Pixel masking
 cache['maskTmap'] = img.MaskThetaMap()
 else:
 img.setControls(cache['Image Controls'])
 img.setMasks(cache['Masks'],True) # not using threshold masks
 img.GeneratePixelMask(esdMul=3,ThetaMap=cache['maskTmap'],FrameMask=cache['FrameMask'])
 for pwdr in img.Integrate(MaskMap=cache['intMaskMap'],ThetaAzimMap=cache['intTAmap']):
 pwdr.Export(os.path.join(pathxye,os.path.split(tifname)[1]),'.xye') # '.tif in name ignored
 img.clearImageCache() # save some space
 img.clearPixelMask()

 print(f'*=== image processed, time={time.time()-starttime:.3f} sec\n')
 del gpx

if __name__ == '__main__':
 if nodes > 0: import multiprocessing as mp

 # make folder to store integrated images & integrated patterns if needed
 if not os.path.exists(pathImg): os.mkdir(pathImg)
 if not os.path.exists(pathxye): os.mkdir(pathxye)

 if nodes > 0: pool = mp.Pool(nodes)

 while True: # Loop will never end, stop with ctrl+C
 tiflist = sorted(glob.glob(globPattern),key=lambda x: os.path.getctime(x)) # get images sorted by creation time, oldest 1st
 if not tiflist:
 time.sleep(0.1)
 continue
 intlist = [] # list of images read to process
 for tifname in tiflist:
 if not os.path.exists(tifname + '.metadata'): continue
 shutil.move(tifname, pathImg) # move file before integration so that it is not found in another search
 shutil.move(tifname + '.metadata', pathImg)
 intlist.append(os.path.join(pathImg,os.path.split(tifname)[1]))
 if nodes == 0:
 for newtifname in intlist: integrate_tif(newtifname)
 else:
 pool.map(integrate_tif,intlist)

 if nodes > 0: pool.close()
 print(f'Total elapsed time={time.time()-scriptstart:.3f} sec')

3.7.10. Histogram Export

This example shows how to export a series of histograms from a collection of
.gpx (project) files. The Python glob() function is used to find all files
matching a wildcard in the specified directory (dataloc). For each file
there is a loop over histograms in that project and for each histogram
Export() is called to write out the contents of that histogram
as CSV (comma-separated variable) file that contains data positions,
observed, computed and background intensities as well as weighting for each
point and Q. Note that for the Export call, there is more than one choice of
exporter that can write .csv extension files, so the export hint must
be specified.

import os,sys,glob
sys.path.insert(0,'/Users/toby/software/G2/GSASII') # change this
import GSASIIscriptable as G2sc

dataloc = "/Users/toby/Scratch/" # where to find data
PathWrap = lambda fil: os.path.join(dataloc,fil) # EZ way 2 add dir to filename

for f in glob.glob(PathWrap('bkg*.gpx')): # put filename prefix here
 print(f)
 gpx = G2sc.G2Project(f)
 for i,h in enumerate(gpx.histograms()):
 hfil = os.path.splitext(f)[0]+'_'+str(i) # file to write
 print('\t',h.name,hfil+'.csv')
 h.Export(hfil,'.csv','histogram CSV')

3.7.11. Automatic Background

This example shows how to use the automatic background feature in GSAS-II to
compute an approximate background and set fixed background points from that
background. This approximately example follows that of the
Autobackground Tutorial [https://advancedphotonsource.github.io/GSAS-II-tutorials/AutoBkg/AutoBkg.html]. In this example, a new project is created and
the data files from the tutorial are read. Note that scripting is not able
to read files from inside a zip archive or use defaulted instrument parameters.
The histograms are then processed in turn.
The first step is to use calc_autobkg to compute the fixed background points.
The refinement flag is then set for the Chebyschev polynomial terms and three
background peaks are added with the width flag set for refinement. The first
call to fit_fixed_points() will refine the three Chebyschev terms and
the intensities of the three background peaks to fit the
fixed background points. The refinement flags for
the widths of the three background peaks are then set as well and the
refinement is repeated. The location of the third background peaks is added
and the refinement is repeated.
Finally, the number of Chebyschev polynomial terms is increased to six
and the refinement is repeated.

import os,glob
import G2script as G2sc
PathWrap = lambda fil: os.path.join('/tmp',fil)
gpx = G2sc.G2Project(newgpx=PathWrap('autobkg.gpx'))
for i in glob.glob(PathWrap('test_RampDown-*.xye')):
 hist = gpx.add_powder_histogram(i,PathWrap('testData.instprm'))
for hist in gpx.histograms('PWDR'):
 hist.calc_autobkg(logLam=3.5)
 hist.set_refinements({"Background": {"no. coeffs": 3, "refine": True}})
 for pk in [2.4,3.1,4.75]:
 hist.add_back_peak(pk,1000,1000,0,[False,True,False,False])
 hist.fit_fixed_points()
 for i in [0,1,2]: hist.ref_back_peak(i,[False,True,True,False])
 hist.fit_fixed_points()
 hist.ref_back_peak(2,[True,True,True,False])
 hist.fit_fixed_points()
 hist.set_refinements({"Background": {"no. coeffs": 6, "refine": True}})
 hist.fit_fixed_points()
 gpx.save()

3.8. GSASIIscriptable Command-line Interface

The routines described above are intended to be called from a Python script, but an
alternate way to access some of the same functionality is to
invoke the GSASIIscriptable.py script from
the command line usually from within a shell script or batch file.
This mode of accessing GSAS-II scripting does not appear to get much use and
is no longer being developed. Please do communicate to the developers if
keeping this mode of access would be of value in your work.

To use the command-line mode is done with a command like this:

python <path/>GSASIIscriptable.py <subcommand> <file.gpx> <options>

The following subcommands are defined:

	create, see create()

	add, see add()

	dump, see dump()

	refine, see refine()

	export, export()

	browse, see IPyBrowse()

Run:

python GSASIIscriptable.py --help

to show the available subcommands, and inspect each subcommand with
python GSASIIscriptable.py <subcommand> –help or see the documentation for each of the above routines.

3.8.1. Parameters in JSON files

The refine command requires two inputs: an existing GSAS-II project (.gpx) file and
a JSON format file
(see Introducing JSON [http://json.org/]) that contains a single dict.
This dict may have two keys:

	refinements:
	This defines the a set of refinement steps in a JSON representation of a
Refinement recipe list.

	code:
	This optionally defines Python code that will be executed after the project is loaded,
but before the refinement is started. This can be used to execute Python code to change
parameters that are not accessible via a Refinement recipe dict (note that the
project object is accessed with variable proj) or to define code that will be called
later (see key call in the Refinement recipe section.)

JSON website: Introducing JSON [http://json.org/].

3.9. API: Complete Documentation

Classes and routines defined in GSASIIscriptable follow.
A script will create one or more G2Project objects by reading
a GSAS-II project (.gpx) file or creating a new one and will then
perform actions such as adding a histogram (method G2Project.add_powder_histogram()),
adding a phase (method G2Project.add_phase()),
or setting parameters and performing a refinement
(method G2Project.do_refinements()).

To change settings within histograms, images and phases, one usually needs to use
methods inside G2PwdrData, G2Image or G2Phase.

	
class GSASIIscriptable.G2AtomRecord(data, indices, proj)

	Wrapper for an atom record. Allows many atom properties to be access
and changed. See the Atom Records description
for the details on what information is contained in an atom record.

Scripts should not try to create a G2AtomRecord object directly as
these objects are created via access from a G2Phase object.

Example showing some uses of G2AtomRecord methods:

>>> atom = some_phase.atom("O3")
>>> # We can access the underlying data structure (a list):
>>> atom.data
['O3', 'O-2', '', ...]
>>> # We can also use wrapper accessors to get or change atom info:
>>> atom.coordinates
(0.33, 0.15, 0.5)
>>> atom.coordinates = [1/3, .1, 1/2]
>>> atom.coordinates
(0.3333333333333333, 0.1, 0.5)
>>> atom.refinement_flags
'FX'
>>> atom.ranId
4615973324315876477
>>> atom.occupancy
1.0

	
property ADP

	Get or set the associated atom’s Uiso or Uaniso value(s).
Use as x = atom.ADP to obtain the value(s) and
atom.ADP = x to set the value(s). For isotropic atoms
a single float value is returned (or used to set). For
anisotropic atoms a list of six values is used.

See also

adp_flag()
uiso()

	
property adp_flag

	Get the associated atom’s iso/aniso setting. The value
will be ‘I’ or ‘A’. No API provision is offered to change
this.

	
property coordinates

	Get or set the associated atom’s coordinates.
Use as x = atom.coordinates to obtain a tuple with
the three (x,y,z) values and atom.coordinates = (x,y,z)
to set the values.

Changes needed to adapt for changes in site symmetry have not yet been
implemented:

	
property element

	Parses element symbol from the atom type symbol for the atom
associated with the current object.

See also

type()

	
property label

	Get the associated atom’s label.
Use as x = atom.label to obtain the value and
atom.label = x to set the value.

	
property mult

	Get the associated atom’s multiplicity value. Should not be
changed by user.

	
property occupancy

	Get or set the associated atom’s site fraction.
Use as x = atom.occupancy to obtain the value and
atom.occupancy = x to set the value.

	
property ranId

	Get the associated atom’s Random Id number. Don’t change this.

	
property refinement_flags

	Get or set refinement flags for the associated atom.
Use as x = atom.refinement_flags to obtain the flags and
atom.refinement_flags = "XU" (etc) to set the value.

	
property type

	Get or set the associated atom’s type. Call as a variable
(x = atom.type) to obtain the value or use
atom.type = x to change the type. It is the user’s
responsibility to make sure that the atom type is valid;
no checking is done here.

See also

element()

	
property uiso

	A synonym for ADP() to be used for Isotropic atoms.
Get or set the associated atom’s Uiso value.
Use as x = atom.uiso to obtain the value and
atom.uiso = x to set the value. A
single float value is returned or used to set.

See also

adp_flag()
ADP()

	
class GSASIIscriptable.G2Image(data, name, proj, image=None)

	Wrapper for an IMG tree entry, containing an image and associated metadata.

Note that in a GSASIIscriptable script, instances of G2Image will be created by
calls to G2Project.add_image() or G2Project.images().
Scripts should not try to create a G2Image object directly as
G2Image.__init__() should be invoked from inside G2Project.

The object contains these class variables:

	G2Image.proj: contains a reference to the G2Project
object that contains this image

	G2Image.name: contains the name of the image

	G2Image.data: contains the image’s associated data in a dict,
as documented for the Image Data Structure.

	G2Image.image: optionally contains a cached the image to
save time in reloading. This is saved only when cacheImage=True
is specified when G2Project.add_image() is called.

Example use of G2Image:

>>> gpx = G2sc.G2Project(newgpx='itest.gpx')
>>> imlst = gpx.add_image(idata,fmthint="TIF")
>>> imlst[0].loadControls('stdSettings.imctrl')
>>> imlst[0].setCalibrant('Si SRM640c')
>>> imlst[0].loadMasks('stdMasks.immask')
>>> imlst[0].Recalibrate()
>>> imlst[0].setControl('outAzimuths',3)
>>> pwdrList = imlst[0].Integrate()

More detailed image processing examples are shown in the
Image Processing section of this chapter.

	
ControlList = {'bool': ['setRings', 'setDefault', 'centerAzm', 'fullIntegrate', 'DetDepthRef', 'showLines'], 'dict': ['varyList'], 'float': ['cutoff', 'setdist', 'wavelength', 'Flat Bkg', 'azmthOff', 'tilt', 'calibdmin', 'rotation', 'distance', 'DetDepth'], 'int': ['calibskip', 'pixLimit', 'edgemin', 'outChannels', 'outAzimuths'], 'list': ['GonioAngles', 'IOtth', 'LRazimuth', 'Oblique', 'PolaVal', 'SampleAbs', 'center', 'ellipses', 'linescan', 'pixelSize', 'range', 'ring', 'rings', 'size'], 'str': ['SampleShape', 'binType', 'formatName', 'color', 'type']}

	Defines the items known to exist in the Image Controls tree section
and the item’s data types. A few are not included here
(‘background image’, ‘dark image’, ‘Gain map’, and ‘calibrant’) because
these items have special set routines,
where references to entries are checked to make sure their values are
correct.

	
GeneratePixelMask(esdMul=3.0, ttmin=0.0, ttmax=180.0, FrameMask=None, ThetaMap=None, fastmode=True, combineMasks=False)

	Generate a Pixel mask with True at the location of pixels that are
statistical outliers (in comparison with others with the same 2theta
value.) The process for this is that a median is computed for pixels
within a small 2theta window and then the median difference is computed
from magnitude of the difference for those pixels from that median. The
medians are used for this rather than a standard deviation as the
computation used here is less sensitive to outliers.
(See GSASIIimage.AutoPixelMask() and
scipy.stats.median_abs_deviation() for more details.)

Mask is placed into the G2image object where it will be
accessed during integration. Note that this increases the .gpx file
size significantly; use clearPixelMask() to delete
this if it need not be saved.

This code is based on GSASIIimage.FastAutoPixelMask()
but has been modified to recycle expensive computations
where possible.

	Parameters:

	
	esdMul (float) – Significance threshold applied to remove
outliers. Default is 3. The larger this number, the fewer
“glitches” that will be removed.

	ttmin (float) – A lower 2theta limit to be used for pixel
searching. Pixels outside this region may be considered for
establishing the medians, but only pixels with 2theta >= ttmin
are masked. Default is 0.

	ttmax (float) – An upper 2theta limit to be used for pixel
searching. Pixels outside this region may be considered for
establishing the medians, but only pixels with 2theta < ttmax
are masked. Default is 180.

	FrameMask (np.array) – An optional precomputed Frame mask
(from MaskFrameMask()). Compute this once for
a series of similar images to reduce computational time.

	ThetaMap (np.array) – An optional precomputed array that
defines 2theta for each pixel, computed in
MaskThetaMap(). Compute this once for
a series of similar images to reduce computational time.

	fastmode (bool) – If True (default) fast Pixel map
searching is done if the C module is available. If the
module is not available or this is False, the pure Python
implementatruion is used. It is not clear why False is
ever needed.

	combineMasks (bool) – When True, the current Pixel mask
will be combined with any previous Pixel map. If False (the
default), the Pixel map from the current search will
replace any previous ones. The reason for use of this as
True would be where different esdMul values are
used for different regions of the image (by setting
ttmin & ttmax) so that the outlier level
can be tuned by combining different searches.

	
IntMaskMap()

	Computes a series of masking arrays for the current image (based on
mask input, but not calibration parameters or the image intensities).
See GSASIIimage.MakeMaskMap() for more details. The output from
this is optionally supplied as input to Integrate()).

Note this is not the same as pixel mask
searching (GeneratePixelMask()).

	
IntThetaAzMap()

	Computes the set of blocked arrays for 2theta-azimuth mapping from
the controls settings of the current image for image integration.
The output from this is optionally supplied as input to
Integrate(). Note that if not supplied, image
integration will compute this information as it is needed, but this
is a relatively slow computation so time can be saved by caching and
reusing this computation for other images that have the
same calibration parameters as the current image.

	
Integrate(name=None, MaskMap=None, ThetaAzimMap=None)

	Invokes an image integration (same as Image Controls/Integration/Integrate
menu command). All parameters will have previously been set with Image Controls
so no input is needed here. However, the optional parameters MaskMap
and ThetaAzimMap may be supplied to save computing these items more than
once, speeding integration of multiple images with the same
image/mask parameters.

Note that if integration is performed on an
image more than once, histogram entries may be overwritten. Use the name
parameter to prevent this if desired.

	Parameters:

	
	name (str) – base name for created histogram(s). If None (default),
the histogram name is taken from the image name.

	MaskMap (list) – from IntMaskMap()

	ThetaAzimMap (list) – from G2Image.IntThetaAzMap()

	Returns:

	a list of created histogram (G2PwdrData) objects.

	
MaskFrameMask()

	Computes a Frame mask from map input for the current image to be
used for a pixel mask computation in
GeneratePixelMask().
This is optional, as if not supplied, mask computation will compute
this, but this is a relatively slow computation and the
results computed here can be reused for other images that have the
same calibration parameters.

	
MaskThetaMap()

	Computes the theta mapping matrix from the controls settings
of the current image to be used for pixel mask computation
in GeneratePixelMask().
This is optional, as if not supplied, mask computation will compute
this, but this is a relatively slow computation and the
results computed here can be reused for other images that have the
same calibration parameters.

	
Recalibrate()

	Invokes a recalibration fit (same as Image Controls/Calibration/Recalibrate
menu command). Note that for this to work properly, the calibration
coefficients (center, wavelength, distance & tilts) must be fairly close.
This may produce a better result if run more than once.

	
TestFastPixelMask()

	Tests to see if the fast (C) code for pixel masking is installed.

	Returns:

	A value of True is returned if fast pixel masking is
available. Otherwise False is returned.

	
clearImageCache()

	Clears a cached image, if one is present

	
clearPixelMask()

	Removes a pixel map from an image, to reduce the .gpx file
size & memory use

	
findControl(arg='')

	Finds the Image Controls parameter(s) in the current image
that match the string in arg. Default is ‘’ which returns all
parameters.

Example:

>>> findControl('calib')
[['calibskip', 'int'], ['calibdmin', 'float'], ['calibrant', 'str']]

	Parameters:

	arg (str) – a string containing part of the name of a
parameter (dict entry) in the image’s Image Controls.

	Returns:

	a list of matching entries in form
[[‘item’,’type’], [‘item’,’type’],…] where each ‘item’ string
contains the sting in arg.

	
getControl(arg)

	Return an Image Controls parameter in the current image.
If the parameter is not found an exception is raised.

	Parameters:

	arg (str) – the name of a parameter (dict entry) in the
image.

	Returns:

	the value as a int, float, list,…

	
getControls(clean=False)

	returns current Image Controls as a dict

	Parameters:

	clean (bool) – causes the calbration information to be deleted

	
getMasks()

	load masks from an IMG tree entry

	
getVary(*args)

	Return the refinement flag(s) for calibration of
Image Controls parameter(s) in the current image.
If the parameter is not found, an exception is raised.

	Parameters:

	
	arg (str) – the name of a refinement parameter in the
varyList for the image. The name should be one of
‘dep’, ‘det-X’, ‘det-Y’, ‘dist’, ‘phi’, ‘tilt’, or ‘wave’

	arg1 (str) – the name of a parameter (dict entry) as before,
optional

	Returns:

	a list of bool value(s)

	
initMasks()

	Initialize Masks, including resetting the Thresholds values

	
loadControls(filename=None, imgDict=None)

	load controls from a .imctrl file

	Parameters:

	
	filename (str) – specifies a file to be read, which should end
with .imctrl (defaults to None, meaning parameters are input
with imgDict.)

	imgDict (dict) – contains a set of image parameters (defaults to
None, meaning parameters are input with filename.)

	
loadMasks(filename, ignoreThreshold=False)

	load masks from a .immask file

	Parameters:

	
	filename (str) – specifies a file to be read, which should end
with .immask

	ignoreThreshold (bool) – If True, masks are loaded with
threshold masks. Default is False which means any Thresholds
in the file are ignored.

	
saveControls(filename)

	write current controls values to a .imctrl file

	Parameters:

	filename (str) – specifies a file to write, which should end
with .imctrl

	
setCalibrant(calib)

	Set a calibrant for the current image

	Parameters:

	calib (str) – specifies a calibrant name which must be one of
the entries in file ImageCalibrants.py. This is validated and
an error provides a list of valid choices.

	
setControl(arg, value)

	Set an Image Controls parameter in the current image.
If the parameter is not found an exception is raised.

	Parameters:

	
	arg (str) – the name of a parameter (dict entry) in the
image. The parameter must be found in ControlList
or an exception is raised.

	value – the value to set the parameter. The value is
cast as the appropriate type from ControlList.

	
setControlFile(typ, imageRef, mult=None)

	Set a image to be used as a background/dark/gain map image

	Parameters:

	
	typ (str) – specifies image type, which must be one of:
‘background image’, ‘dark image’, ‘gain map’; N.B. only the first
four characters must be specified and case is ignored.

	imageRef – A reference to the desired image. Either the Image
tree name (str), the image’s index (int) or
a image object (G2Image)

	mult (float) – a multiplier to be applied to the image (not used
for ‘Gain map’; required for ‘background image’, ‘dark image’

	
setControls(controlsDict)

	uses dict from getControls() to set Image Controls for current image

	
setMasks(maskDict, resetThresholds=False)

	load masks dict (from getMasks()) into current IMG record

	Parameters:

	
	maskDict (dict) – specifies a dict with image parameters,
from getMasks()

	resetThresholds (bool) – If True, Threshold Masks in the
dict are ignored. The default is False which means Threshold
Masks are retained.

	
setVary(arg, value)

	Set a refinement flag for Image Controls parameter in the
current image that is used for fitting calibration parameters.
If the parameter is not ‘*’ or found, an exception is raised.

	Parameters:

	
	arg (str) – the name of a refinement parameter in the
varyList for the image. The name should be one of
‘dep’, ‘det-X’, ‘det-Y’, ‘dist’, ‘phi’, ‘tilt’, or ‘wave’,
or it may be a list or tuple of names,
or it may be ‘*’ in which all parameters are set accordingly.

	value – the value to set the parameter. The value is
cast as bool.

	
exception GSASIIscriptable.G2ImportException

	

	
class GSASIIscriptable.G2ObjectWrapper(datadict)

	Base class for all GSAS-II object wrappers.

The underlying GSAS-II format can be accessed as wrapper.data. A number
of overrides are implemented so that the wrapper behaves like a dictionary.

Author: Jackson O’Donnell (jacksonhodonnell .at. gmail.com)

	
class GSASIIscriptable.G2PDF(data, name, proj)

	Wrapper for a PDF tree entry, containing the information needed to
compute a PDF and the S(Q), G(r) etc. after the computation is done.
Note that in a GSASIIscriptable script, instances of G2PDF will be created by
calls to G2Project.add_PDF() or G2Project.pdf().
Scripts should not try to create a G2PDF object directly.

Example use of G2PDF:

gpx.add_PDF('250umSiO2.pdfprm',0)
pdf.set_formula(['Si',1],['O',2])
pdf.set_background('Container',1,-0.21)
for i in range(5):
 if pdf.optimize(): break
pdf.calculate()
pdf.export(gpx.filename,'S(Q), pdfGUI')
gpx.save('pdfcalc.gpx')

See also

G2Project.pdf()
G2Project.pdfs()

	
calculate(xydata=None, limits=None, inst=None)

	Compute the PDF using the current parameters. Results are set
in the PDF object arrays (self.data[‘PDF Controls’][‘G(R)’] etc.).
Note that if xydata, is specified, the background histograms(s)
will not be accessed from the project file associated with the current
PDF entry. If limits and inst are both specified, no histograms
need be in the current project. However, the self.data[‘PDF Controls’]
sections (‘Sample’, ‘Sample Bkg.’,’Container Bkg.’) must be
non-blank for the corresponding items to be used from``xydata``.

	Parameters:

	
	xydata (dict) – an array containing the Sample’s I vs Q, and
any or none of the Sample Background, the Container scattering and
the Container Background. If xydata is None (default), the values are
taken from histograms, as named in the PDF’s self.data[‘PDF Controls’]
entries with keys ‘Sample’, ‘Sample Bkg.’,’Container Bkg.’ &
‘Container’.

	limits (list) – upper and lower Q values to be used for PDF
computation. If None (default), the values are
taken from the Sample histogram’s .data[‘Limits’][1] values.

	inst (dict) – The Sample histogram’s instrument parameters
to be used for PDF computation. If None (default), the values are
taken from the Sample histogram’s .data[‘Instrument Parameters’][0]
values.

	
export(fileroot, formats)

	Write out the PDF-related data (G(r), S(Q),…) into files

	Parameters:

	
	fileroot (str) – name of file(s) to be written. The extension
will be ignored and set to .iq, .sq, .fq or .gr depending
on the formats selected.

	formats (str) – string specifying the file format(s) to be written,
should contain at least one of the following keywords:
I(Q), S(Q), F(Q), G(r) and/or PDFgui (capitalization and
punctuation is ignored). Note that G(r) and PDFgui should not
be specifed together.

	
optimize(showFit=True, maxCycles=5, xydata=None, limits=None, inst=None)

	Optimize the low R portion of G(R) to minimize selected
parameters. Note that this updates the parameters in the settings
(self.data[‘PDF Controls’]) but does not update the PDF object
arrays (self.data[‘PDF Controls’][‘G(R)’] etc.) with the computed
values, use calculate() after a fit to do that.

	Parameters:

	
	showFit (bool) – if True (default) the optimized parameters
are shown before and after the fit, as well as the RMS value
in the minimized region.

	maxCycles (int) – the maximum number of least-squares cycles;
defaults to 5.

	xydata (dict) – an array containing the Sample’s I vs Q, and
any or none of the Sample Background, the Container scattering and
the Container Background. If xydata is None (default), the values are
taken from histograms, as named in the PDF’s self.data[‘PDF Controls’]
entries with keys ‘Sample’, ‘Sample Bkg.’,’Container Bkg.’ &
‘Container’.

	limits (list) – upper and lower Q values to be used for PDF
computation. If None (default), the values are
taken from the Sample histogram’s .data[‘Limits’][1] values.

	inst (dict) – The Sample histogram’s instrument parameters
to be used for PDF computation. If None (default), the values are
taken from the Sample histogram’s .data[‘Instrument Parameters’][0]
values.

	Returns:

	the result from the optimizer as True or False, depending
on if the refinement converged.

	
set_background(btype, histogram, mult=-1.0, refine=False)

	Sets a histogram to be used as the ‘Sample Background’,
the ‘Container’ or the ‘Container Background.’

	Parameters:

	
	btype (str) – Type of background to set, must contain
the string ‘samp’ for Sample Background’, ‘cont’ and ‘back’
for the ‘Container Background’ or only ‘cont’ for the
‘Container’. Note that capitalization and extra characters
are ignored, so the full strings (such as ‘Sample
Background’ & ‘Container Background’) can be used.

	histogram – A reference to a histogram,
which can be reference by object, name, or number.

	mult (float) – a multiplier for the histogram; defaults
to -1.0

	refine (bool) – a flag to enable refinement (only
implemented for ‘Sample Background’); defaults to False

	
set_formula(*args)

	Set the chemical formula for the PDF computation.
Use pdf.set_formula([‘Si’,1],[‘O’,2]) for SiO2.

	Parameters:

	
	item1 (list) – The element symbol and number of atoms in formula for first element

	item2 (list) – The element symbol and number of atoms in formula for second element,…

repeat parameters as needed for all elements in the formula.

	
class GSASIIscriptable.G2Phase(data, name, proj)

	A wrapper object around a given phase.
The object contains these class variables:

	G2Phase.proj: contains a reference to the G2Project
object that contains this phase

	G2Phase.name: contains the name of the phase

	G2Phase.data: contains the phases’s associated data in a dict,
as documented for the Phase Tree items.

Scripts should not try to create a G2Phase object directly as
G2Phase.__init__() should be invoked from inside G2Project.

Author: Jackson O’Donnell (jacksonhodonnell .at. gmail.com)

	
HAPvalue(param=None, newValue=None, targethistlist='all')

	Retrieves or sets individual HAP parameters for one histogram or
multiple histograms.

	Parameters:

	
	param (str) – is a parameter name, which can be ‘Scale’ (phase
fraction), ‘Use’, ‘Extinction’ or ‘LeBail’.
If not specified or invalid
an exception is generated showing the list of valid parameters.
At present, these HAP parameters cannot be access with this function:
‘Pref.Ori.’, ‘Size’, ‘Mustrain’, ‘HStrain’, ‘Babinet’. On request this
might be addressed in the future. Some of these values can be set via
G2Phase.set_HAP_refinements().

	newValue – the value to use when setting the HAP parameter for the
appropriate histogram(s). Will be converted to the proper type or
an exception will be generated if not possible. If not specified,
and only one histogram is selected, the value is retrieved and
returned.

	targethistlist (list) – a list of histograms where each item in the
list can be a histogram object (G2PwdrData),
a histogram name or the index number of the histogram.
The index number is relative to all histograms in the tree, not to
those in the phase.
If the string ‘all’ (default), then all histograms in the phase
are used.

targethistlist must correspond to a single histogram if a value
is to be returned (when argument newValue is not specified).

	Returns:

	the value of the parameter, when argument newValue is not specified.

See also

set_HAP_refinements()

Example:

val = ph0.HAPvalue('Scale')
val = ph0.HAPvalue('Scale',targethistlist=[0])
ph0.HAPvalue('Scale',2.5)

The first command returns the phase fraction if only one histogram
is associated with the current phase, or raises an exception.
The second command returns the phase fraction from the first histogram
associated with the current phase. The third command sets the phase
fraction for all histograms associated with the current phase.

	
addDistRestraint(origin, target, bond, factor=1.1, ESD=0.01)

	Adds bond distance restraint(s) for the selected phase

This works by search for interatomic distances between atoms in the
origin list and the target list (the two lists may be the same but most
frequently will not) with a length between bond/factor and bond*factor.
If a distance is found in that range, it is added to the restraints
if it was not already found.

	Parameters:

	
	origin (list) – a list of atoms, each atom may be an atom
object, an index or an atom label

	target (list) – a list of atoms, each atom may be an atom
object, an index or an atom label

	bond (float) – the target bond length in A for the located atom

	factor (float) – a tolerance factor used when searching for
bonds (defaults to 1.1)

	ESD (float) – the uncertainty for the bond (defaults to 0.01)

	Returns:

	returns the number of new restraints that are found

As an example:

gpx = G2sc.G2Project('restr.gpx')
ph = gpx.phases()[0]
ph.clearDistRestraint()
origin = [a for a in ph.atoms() if a.element == 'Si']
target = [i for i,a in enumerate(ph.atoms()) if a.element == 'O']
c = ph.addDistRestraint(origin, target, 1.64)
print(c,'new restraints found')
ph.setDistRestraintWeight(1000)
gpx.save('restr-mod.gpx')

This example locates the first phase in a project file, clears any previous
restraints. Then it places restraints on bonds between Si and O atoms at
1.64 A. Each restraint is weighted 1000 times in comparison to
(obs-calc)/sigma for a data point. To show how atom selection can
work, the origin atoms are identified here
by atom object while the target atoms are identified by atom index.
The methods are interchangeable. If atom labels are unique, then:

origin = [a.label for a in ph.atoms() if a.element == 'Si']

would also work identically.

	
add_atom(x, y, z, element, lbl, occ=1.0, uiso=0.01)

	Adds an atom to the current phase

	Parameters:

	
	x (float) – atom fractional x coordinate

	y (float) – atom fractional y coordinate

	z (float) – atom fractional z coordinate

	element (str) – an element symbol (capitalization is ignored). Optionally add
a valence (as in Ba+2)

	lbl (str) – A label for this atom

	occ (float) – A fractional occupancy for this atom (defaults to 1).

	uiso (float) – A Uiso value for this atom (defaults to 0.01).

	Returns:

	the G2AtomRecord atom object for the new atom

	
atom(atomlabel)

	Returns the atom specified by atomlabel, or None if it does not
exist.

	Parameters:

	atomlabel (str) – The name of the atom (e.g. “O2”)

	Returns:

	A G2AtomRecord object
representing the atom.

	
atoms()

	Returns a list of atoms present in the current phase.

	Returns:

	A list of G2AtomRecord objects.

See also

atom()
G2AtomRecord

	
clearDistRestraint()

	Deletes any previously defined bond distance restraint(s) for the selected phase

See also

G2Phase.addDistRestraint()

	
clear_HAP_refinements(refs, histograms='all')

	Clears the given HAP refinement parameters between this phase and
the given histograms.

	Parameters:

	
	refs (dict) – A dictionary of the parameters to be cleared.
See the the Histogram-and-phase parameters table for what can be specified.

	histograms – Either ‘all’ (default) or a list of the histograms by index, name
or object.
The index number is relative to all histograms in the tree, not to
those in the phase.
Histograms not associated with the current phase will be ignored.
whose HAP parameters will be set with this phase. Histogram and phase
must already be associated

	Returns:

	None

	
clear_refinements(refs)

	Clears a given set of parameters.

	Parameters:

	refs (dict) – The parameters to clear.
See the Phase parameters table for what can be specified.

	
property composition

	Provides a dict where keys are atom types and values are the number of
atoms of that type in cell (such as {‘H’: 2.0, ‘O’: 1.0})

	
copyHAPvalues(sourcehist, targethistlist='all', skip=[], use=None)

	Copies HAP parameters for one histogram to a list of other histograms.
Use skip or use to select specific entries to be copied or not used.

	Parameters:

	
	sourcehist – is a histogram object (G2PwdrData) or
a histogram name or the index number of the histogram to copy
parameters from.
The index number is relative to all histograms in the tree, not to
those in the phase.

	targethistlist (list) – a list of histograms where each item in the
list can be a histogram object (G2PwdrData),
a histogram name or the index number of the histogram.
If the string ‘all’ (default), then all histograms in the phase
are used.

	skip (list) – items in the HAP dict that should not be
copied. The default is an empty list, which causes all items
to be copied. To see a list of items in the dict, use
getHAPvalues() or use an invalid item, such as ‘?’.

	use (list) – specifies the items in the HAP dict should be
copied. The default is None, which causes all items
to be copied.

examples:

ph0.copyHAPvalues(0,[1,2,3])
ph0.copyHAPvalues(0,use=['HStrain','Size'])

The first example copies all HAP parameters from the first histogram to
the second, third and fourth histograms (as listed in the project tree).
The second example copies only the ‘HStrain’ (Dij parameters and
refinement flags) and the ‘Size’ (crystallite size settings, parameters
and refinement flags) from the first histogram to all histograms.

	
property density

	Provides a scalar with the density of the phase. In case of a
powder this assumes a 100% packing fraction.

	
export_CIF(outputname, quickmode=True)

	Write this phase to a .cif file named outputname

	Parameters:

	
	outputname (str) – The name of the .cif file to write to

	quickmode (bool) – Currently ignored. Carryover from exports.G2export_CIF

	
getHAPentryList(histname=None, keyname='')

	Returns a dict with HAP values. Optionally a histogram
may be selected.

	Parameters:

	
	histname – is a histogram object (G2PwdrData) or
a histogram name or the index number of the histogram.
The index number is relative to all histograms in the tree, not to
those in the phase. If no histogram is specified, all histograms
are selected.

	keyname (str) – an optional string. When supplied only entries
where at least one key contains the specified string are reported.
Case is ignored, so ‘sg’ will find entries where one of the keys
is ‘SGdata’, etc.

	Returns:

	a set of HAP dict keys.

Example:

>>> p.getHAPentryList(0,'Scale')
[(['PWDR test Bank 1', 'Scale'], list, [1.0, False])]

See also

getHAPentryValue()
setHAPentryValue()

	
getHAPentryValue(keylist)

	Returns the HAP value associated with a list of keys. Where the
value returned is a list, it may be used as the target of
an assignment (as in
getHAPentryValue(...)[...] = val)
to set a value inside a list.

	Parameters:

	keylist (list) – a list of dict keys, typically as returned by
getHAPentryList(). Note the first entry is a histogram name.
Example: ['PWDR hist1.fxye Bank 1', 'Scale']

	Returns:

	HAP value

Example:

>>> sclEnt = p.getHAPentryList(0,'Scale')[0]
>>> sclEnt
[(['PWDR test Bank 1', 'Scale'], list, [1.0, False])]
>>> p.getHAPentryValue(sclEnt[0])
[1.0, False]
>>> p.getHAPentryValue(sclEnt[0])[1] = True
>>> p.getHAPentryValue(sclEnt[0])
[1.0, True]

	
getHAPvalues(histname)

	Returns a dict with HAP values for the selected histogram

	Parameters:

	histogram – is a histogram object (G2PwdrData) or
a histogram name or the index number of the histogram.
The index number is relative to all histograms in the tree, not to
those in the phase.

	Returns:

	HAP value dict

	
getPhaseEntryList(keyname='')

	Returns a dict with control values.

	Parameters:

	keyname (str) – an optional string. When supplied only entries
where at least one key contains the specified string are reported.
Case is ignored, so ‘sg’ will find entries where one of the keys
is ‘SGdata’, etc.

	Returns:

	a set of phase dict keys. Note that HAP items, while
technically part of the phase entries, are not included.

See getHAPentryList() for a related example.

See also

getPhaseEntryValue()
setPhaseEntryValue()

	
getPhaseEntryValue(keylist)

	Returns the value associated with a list of keys.
Where the value returned is a list, it may be used as the target of
an assignment (as in
getPhaseEntryValue(...)[...] = val)
to set a value inside a list.

	Parameters:

	keylist (list) – a list of dict keys, typically as returned by
getPhaseEntryList().

	Returns:

	a phase setting; may be a int, float, bool, list,…

See getHAPentryValue() for a related example.

	
get_cell()

	
	Returns a dictionary of the cell parameters, with keys:
	‘length_a’, ‘length_b’, ‘length_c’, ‘angle_alpha’, ‘angle_beta’, ‘angle_gamma’, ‘volume’

	Returns:

	a dict

See also

get_cell_and_esd()

	
get_cell_and_esd()

	Returns a pair of dictionaries, the first representing the unit cell, the second
representing the estimated standard deviations of the unit cell.

	Returns:

	a tuple of two dictionaries

See also

get_cell()

	
histograms()

	Returns a list of histogram names associated with the current phase ordered
as they appear in the tree (see G2Project.histograms()).

	
mu(wave)

	Provides mu values for a phase at the supplied wavelength in A.
Uses GSASIImath.XScattDen which seems to be off by an order of
magnitude, which has been corrected here.

	
setDistRestraintWeight(factor=1)

	Sets the weight for the bond distance restraint(s) to factor

	Parameters:

	factor (float) – the weighting factor for this phase’s restraints. Defaults
to 1 but this value is typically much larger (10**2 to 10**4)

See also

G2Phase.addDistRestraint()

	
setHAPentryValue(keylist, newvalue)

	Sets an HAP value associated with a list of keys.

	Parameters:

	
	keylist (list) – a list of dict keys, typically as returned by
getHAPentryList(). Note the first entry is a histogram name.
Example: ['PWDR hist1.fxye Bank 1', 'Scale']

	newvalue – a new value for the HAP setting. The type must be
the same as the initial value, but if the value is a container
(list, tuple, np.array,…) the elements inside are not checked.

Example:

>>> sclEnt = p.getHAPentryList(0,'Scale')[0]
>>> p.getHAPentryValue(sclEnt[0])
[1.0, False]
>>> p.setHAPentryValue(sclEnt[0], (1, True))
GSASIIscriptable.G2ScriptException: setHAPentryValue error: types do not agree for keys ['PWDR test.fxye Bank 1', 'Scale']
>>> p.setHAPentryValue(sclEnt[0], [1, True])
>>> p.getHAPentryValue(sclEnt[0])
[1, True]

	
setHAPvalues(HAPdict, targethistlist='all', skip=[], use=None)

	Copies HAP parameters for one histogram to a list of other histograms.
Use skip or use to select specific entries to be copied or not used.
Note that HStrain and sometimes Mustrain values can be specific to
a Laue class and should be copied with care between phases of different
symmetry. A “sanity check” on the number of Dij terms is made if HStrain
values are copied.

	Parameters:

	
	HAPdict (dict) – is a dict returned by getHAPvalues() containing
HAP parameters.

	targethistlist (list) – a list of histograms where each item in the
list can be a histogram object (G2PwdrData),
a histogram name or the index number of the histogram.
The index number is relative to all histograms in the tree, not to
those in the phase.
If the string ‘all’ (default), then all histograms in the phase
are used.

	skip (list) – items in the HAP dict that should not be
copied. The default is an empty list, which causes all items
to be copied. To see a list of items in the dict, use
getHAPvalues() or use an invalid item, such as ‘?’.

	use (list) – specifies the items in the HAP dict should be
copied. The default is None, which causes all items
to be copied.

Example:

HAPdict = ph0.getHAPvalues(0)
ph1.setHAPvalues(HAPdict,use=['HStrain','Size'])

This copies the Dij (hydrostatic strain) HAP parameters and the
crystallite size broadening terms from the first histogram in
phase ph0 to all histograms in phase ph1.

	
setPhaseEntryValue(keylist, newvalue)

	Sets a phase control value associated with a list of keys.

	Parameters:

	
	keylist (list) – a list of dict keys, typically as returned by
getPhaseEntryList().

	newvalue – a new value for the phase setting. The type must be
the same as the initial value, but if the value is a container
(list, tuple, np.array,…) the elements inside are not checked.

See setHAPentryValue() for a related example.

	
setSampleProfile(histname, parmType, mode, val1, val2=None, axis=None, LGmix=None)

	Sets sample broadening parameters for a histogram associated with the
current phase. This currently supports isotropic and uniaxial broadening
modes only.

	Parameters:

	
	histogram – is a histogram object (G2PwdrData) or
a histogram name or the index number of the histogram.
The index number is relative to all histograms in the tree, not to
those in the phase.

	parmType (str) – should be ‘size’ or ‘microstrain’ (can be abbreviated to ‘s’ or ‘m’)

	mode (str) – should be ‘isotropic’ or ‘uniaxial’ (can be abbreviated to ‘i’ or ‘u’)

	val1 (float) – value for isotropic size (in \(\mu m\)) or
microstrain (unitless, \(\Delta Q/Q \times 10^6\)) or the equatorial value in the uniaxial case

	val2 (float) – value for axial size (in \(\mu m\)) or
axial microstrain (unitless, \(\Delta Q/Q \times 10^6\))
in uniaxial case; not used for isotropic

	axis (list) – tuple or list with three values indicating the preferred direction
for uniaxial broadening; not used for isotropic

	LGmix (float) – value for broadening type (1=Lorentzian, 0=Gaussian or a value
between 0 and 1. Default value (None) is ignored.

Examples:

phase0.setSampleProfile(0,'size','iso',1.2)
phase0.setSampleProfile(0,'micro','isotropic',1234)
phase0.setSampleProfile(0,'m','u',1234,4567,[1,1,1],.5)
phase0.setSampleProfile(0,'s','uni',1.2,2.3,[0,0,1])

	
set_HAP_refinements(refs, histograms='all')

	Sets the given HAP refinement parameters between the current phase and
the specified histograms.

	Parameters:

	
	refs (dict) – A dictionary of the parameters to be set. See
the Histogram-and-phase parameters table for a description of this
dictionary.

	histograms – Either ‘all’ (default) or a list of the histograms by index, name
or object. The index number is relative to all histograms in the tree, not to
those in the phase.
Histograms not associated with the current phase will be ignored.
whose HAP parameters will be set with this phase. Histogram and phase
must already be associated.

	Returns:

	None

	
set_refinements(refs)

	Sets the phase refinement parameter ‘key’ to the specification ‘value’

	Parameters:

	refs (dict) – A dictionary of the parameters to be set. See the
Phase parameters table for a description of
this dictionary.

	Returns:

	None

	
class GSASIIscriptable.G2Project(gpxfile=None, author=None, filename=None, newgpx=None)

	Represents an entire GSAS-II project. The object contains these
class variables:

	G2Project.filename: contains the .gpx filename

	G2Project.names: contains the contents of the project “tree” as a list
of lists. Each top-level entry in the tree is an item in the list. The
name of the top-level item is the first item in the inner list. Children
of that item, if any, are subsequent entries in that list.

	G2Project.data: contains the entire project as a dict. The keys
for the dict are the top-level names in the project tree (initial items
in the G2Project.names inner lists) and each top-level item is stored
as a dict.

	The contents of Top-level entries will be found in the item
named ‘data’, as an example, G2Project.data['Notebook']['data']

	The contents of child entries will be found in the item
using the names of the parent and child, for example
G2Project.data['Phases']['NaCl']

	Parameters:

	
	gpxfile (str) – Existing .gpx file to be loaded. If nonexistent,
creates an empty project.

	author (str) – Author’s name (not yet implemented)

	newgpx (str) – The filename the project should be saved to in
the future. If both newgpx and gpxfile are present, the project is
loaded from the file named by gpxfile and then when saved will
be written to the file named by newgpx.

	filename (str) – To be deprecated. Serves the same function as newgpx,
which has a somewhat more clear name.
(Do not specify both newgpx and filename).

There are two ways to initialize this object:

>>> # Load an existing project file
>>> proj = G2Project('filename.gpx')

>>> # Create a new project
>>> proj = G2Project(newgpx='new_file.gpx')

Histograms can be accessed easily.

>>> # By name
>>> hist = proj.histogram('PWDR my-histogram-name')

>>> # Or by index
>>> hist = proj.histogram(0)
>>> assert hist.id == 0

>>> # Or by random id
>>> assert hist == proj.histogram(hist.ranId)

Phases can be accessed the same way.

>>> phase = proj.phase('name of phase')

New data can also be loaded via add_phase() and
add_powder_histogram().

>>> hist = proj.add_powder_histogram('some_data_file.chi',
 'instrument_parameters.prm')
>>> phase = proj.add_phase('my_phase.cif', histograms=[hist])

Parameters for Rietveld refinement can be turned on and off at the project level
as well as described in
set_refinement(), iter_refinements() and
do_refinements().

	
ComputeWorstFit()

	Computes the worst-fit parameters in a model.

	Returns:

	(keys, derivCalcs, varyList) where:

	keys is a list of parameter names
where the names are ordered such that first entry in the list
will produce the largest change in the fit if refined and the last
entry will have the smallest change;

	derivCalcs is a dict where the key is a variable name and the
value is a list with three partial derivative values for
d(Chi**2)/d(var) where the derivatives are computed
for values v-d to v; v-d to v+d; v to v+d where v is
the current value for the variable and d is a small delta
value chosen for that variable type;

	varyList is a list of the parameters that are currently set to
be varied.

	
add_EqnConstr(total, varlist, multlist=[], reloadIdx=True)

	Set a constraint equation on a list of variables.

Note that this will cause the project to be saved if not
already done so. It will always save the .gpx file before
creating a constraint if reloadIdx is True.

	Parameters:

	
	total (float) – A value that the constraint must equal

	varlist (list) – A list of variables to use in the equation.
Each value in the list may be one of the following three items:
(A) a GSASIIobj.G2VarObj object,
(B) a variable name (str), or
(C) a list/tuple of arguments for make_var_obj().

	multlist (list) – a list of multipliers for each variable in
varlist. If there are fewer values than supplied for varlist
then missing values will be set to 1. The default is [] which
means that all multipliers are 1.

	reloadIdx (bool) – If True (default) the .gpx file will be
saved and indexed prior to use. This is essential if atoms, phases
or histograms have been added to the project.

Example:

gpx.add_EqnConstr(1.0,('0::Ax:0','0::Ax:1'),[1,1])

	
add_EquivConstr(varlist, multlist=[], reloadIdx=True)

	Set a equivalence on a list of variables.

Note that this will cause the project to be saved if not
already done so. It will always save the .gpx file before
creating a constraint if reloadIdx is True.

	Parameters:

	
	varlist (list) – A list of variables to make equivalent to the
first item in the list.
Each value in the list may be one of the following three items:
(A) a GSASIIobj.G2VarObj object,
(B) a variable name (str), or
(C) a list/tuple of arguments for make_var_obj().

	multlist (list) – a list of multipliers for each variable in
varlist. If there are fewer values than supplied for varlist
then missing values will be set to 1. The default is [] which
means that all multipliers are 1.

	reloadIdx (bool) – If True (default) the .gpx file will be
saved and indexed prior to use. This is essential if atoms, phases
or histograms have been added to the project.

Examples:

gpx.add_EquivConstr(('0::AUiso:0','0::AUiso:1','0::AUiso:2'))
gpx.add_EquivConstr(('0::dAx:0','0::dAx:1'),[1,-1])

	
add_HoldConstr(varlist, reloadIdx=True)

	Set a hold constraint on a list of variables.

Note that this will cause the project to be saved if not
already done so. It will always save the .gpx file before
creating constraint(s) if reloadIdx is True.

	Parameters:

	
	varlist (list) – A list of variables to hold.
Each value in the list may be one of the following three items:
(A) a GSASIIobj.G2VarObj object,
(B) a variable name (str), or
(C) a list/tuple of arguments for make_var_obj().

	reloadIdx (bool) – If True (default) the .gpx file will be
saved and indexed prior to use. This is essential if atoms, phases
or histograms have been added to the project.

Example:

gpx.add_HoldConstr(('0::A4','0:1:D12',':0:Lam'))

	
add_NewVarConstr(varlist, multlist=[], name=None, vary=False, reloadIdx=True)

	Set a new-variable constraint from a list of variables to
create a new parameter from two or more predefined parameters.

Note that this will cause the project to be saved, if not
already done so. It will always save the .gpx file before
creating a constraint if reloadIdx is True.

	Parameters:

	
	varlist (list) – A list of variables to use in the expression.
Each value in the list may be one of the following three items:
(A) a GSASIIobj.G2VarObj object,
(B) a variable name (str), or
(C) a list/tuple of arguments for make_var_obj().

	multlist (list) – a list of multipliers for each variable in
varlist. If there are fewer values than supplied for varlist
then missing values will be set to 1. The default is [] which
means that all multipliers are 1.

	name (str) – An optional string to be supplied as a name for this
new parameter.

	vary (bool) – Determines if the new variable should be flagged to
be refined.

	reloadIdx (bool) – If True (default) the .gpx file will be
saved and indexed prior to use. This is essential if atoms, phases
or histograms have been added to the project.

Examples:

gpx.add_NewVarConstr(('0::AFrac:0','0::AFrac:1'),[0.5,0.5],'avg',True)
gpx.add_NewVarConstr(('0::AFrac:0','0::AFrac:1'),[1,-1],'diff',False,False)

The example above is a way to treat two variables that are closely correlated.
The first variable, labeled as avg, allows the two variables to refine in tandem
while the second variable (diff) tracks their difference. In the initial stages of
refinement only avg would be refined, but in the final stages, it might be possible
to refine diff. The second False value in the second example prevents the
.gpx file from being saved.

	
add_PDF(prmfile, histogram)

	Creates a PDF entry that can be used to compute a PDF.
Note that this command places an entry in the project,
but G2PDF.calculate() must be used to actually perform
the computation.

	Parameters:

	
	datafile (str) – The powder data file to read, a filename.

	histogram – A reference to a histogram,
which can be reference by object, name, or number.

	Returns:

	A G2PDF object for the PDF entry

	
add_constraint_raw(cons_scope, constr)

	Adds a constraint to the project.

	Parameters:

	
	cons_scope (str) – should be one of “Hist”, “Phase”, “HAP”, or “Global”.

	constr (list) – a constraint coded with GSASIIobj.G2VarObj
objects as described in the
constraint definition descriptions.

WARNING this function does not check the constraint is well-constructed.
Please use G2Project.add_HoldConstr() or
G2Project.add_EquivConstr() (etc.) instead, unless you are really
certain you know what you are doing.

	
add_image(imagefile, fmthint=None, defaultImage=None, indexList=None, cacheImage=False)

	Load an image into a project

	Parameters:

	
	imagefile (str) – The image file to read, a filename.

	fmthint (str) – If specified, only importers where the format name
(reader.formatName, as shown in Import menu) contains the
supplied string will be tried as importers. If not specified, all
importers consistent with the file extension will be tried
(equivalent to “guess format” in menu).

	defaultImage (str) – The name of an image to use as a default for
setting parameters for the image file to read.

	indexList (list) – specifies the image numbers (counting from zero)
to be used from the file when a file has multiple images. A value of
[0,2,3] will cause the only first, third and fourth images in the file
to be included in the project.

	cacheImage (bool) – When True, the image is cached to save
in rereading it later. Default is False (no caching).

	Returns:

	a list of G2Image object(s) for the added image(s)

	
add_phase(phasefile=None, phasename=None, histograms=[], fmthint=None, mag=False, spacegroup='P 1', cell=None)

	Loads a phase into the project, usually from a .cif file

	Parameters:

	
	phasefile (str) – The CIF file (or other file type, see fmthint)
that the phase will be read from.
May be left as None (the default) if the phase will be constructed
a step at a time.

	phasename (str) – The name of the new phase, or None for the
default. A phasename must be specified when a phasefile is not.

	histograms (list) – The names of the histograms to associate with
this phase. Use proj.histograms() to add to all histograms.

	fmthint (str) – If specified, only importers where the format name
(reader.formatName, as shown in Import menu) contains the
supplied string will be tried as importers. If not specified, all
importers consistent with the file extension will be tried
(equivalent to “guess format” in menu).

	mag (bool) – Set to True to read a magCIF

	spacegroup (str) – The space group name as a string. The
space group must follow the naming rules used in
GSASIIspc.SpcGroup(). Defaults to ‘P 1’. Note that
this is only used when phasefile is None.

	cell (list) – a list with six unit cell constants
(a, b, c, alpha, beta and gamma in Angstrom/degrees).

	Returns:

	A G2Phase object representing the
new phase.

	
add_powder_histogram(datafile, iparams=None, phases=[], fmthint=None, databank=None, instbank=None, multiple=False)

	Loads a powder data histogram or multiple powder histograms
into the project.

Note that the data type (x-ray/CW neutron/TOF) for the histogram
will be set from the instrument parameter file. The instrument
geometry is assumed to be Debye-Scherrer except for
dual-wavelength x-ray, where Bragg-Brentano is assumed.

	Parameters:

	
	datafile (str) – A filename with the powder data file to read.
Note that in unix fashion, “~” can be used to indicate the
home directory (e.g. ~/G2data/data.fxye).

	iparams (str) – A filenme for an instrument parameters file,
or a pair of instrument parameter dicts from load_iprms().
This may be omitted for readers that provide the instrument
parameters in the file. (Only a few importers do this.)

	phases (list) – A list of phases to link to the new histogram,
phases can be references by object, name, rId or number.
Alternately, use ‘all’ to link to all phases in the project.

	fmthint (str) – If specified, only importers where the format name
(reader.formatName, as shown in Import menu) contains the
supplied string will be tried as importers. If not specified, all
importers consistent with the file extension will be tried
(equivalent to “guess format” in menu).

	databank (int) – Specifies a dataset number to read, if file contains
more than set of data. This should be 1 to read the first bank in
the file (etc.) regardless of the number on the Bank line, etc.
Default is None which means the first dataset in the file is read.
When multiple is True, optionally a list of dataset numbers can
be supplied here.

	instbank (int) – Specifies an instrument parameter set to read, if
the instrument parameter file contains more than set of parameters.
This will match the INS # in an GSAS type file so it will typically
be 1 to read the first parameter set in the file (etc.)
Default is None which means there should only be one parameter set
in the file.

	multiple (bool) – If False (default) only one dataset is read, but if
specified as True, all selected banks of data (see databank)
are read in.

	Returns:

	A G2PwdrData object representing
the histogram, or if multiple is True, a list of G2PwdrData
objects is returned.

	
add_simulated_powder_histogram(histname, iparams, Tmin, Tmax, Tstep=None, wavelength=None, scale=None, phases=[], ibank=None, Npoints=None)

	Create a simulated powder data histogram for the project.

Requires an instrument parameter file.
Note that in unix fashion, “~” can be used to indicate the
home directory (e.g. ~/G2data/data.prm). The instrument parameter file
will determine if the histogram is x-ray, CW neutron, TOF, etc. as well
as the instrument type.

	Parameters:

	
	histname (str) – A name for the histogram to be created.

	iparams (str) – The instrument parameters file, a filename.

	Tmin (float) – Minimum 2theta or TOF (millisec) for dataset to be simulated

	Tmax (float) – Maximum 2theta or TOF (millisec) for dataset to be simulated

	Tstep (float) – Step size in 2theta or deltaT/T (TOF) for simulated dataset.
Default is to compute this from Npoints.

	wavelength (float) – Wavelength for CW instruments, overriding the value
in the instrument parameters file if specified. For single-wavelength histograms,
this should be a single float value, for K alpha 1,2 histograms, this should
be a list or tuple with two values.

	scale (float) – Histogram scale factor which multiplies the pattern. Note that
simulated noise is added to the pattern, so that if the maximum intensity is
small, the noise will mask the computed pattern. The scale needs to be a large
number for neutrons.
The default, None, provides a scale of 1 for x-rays, 10,000 for CW neutrons
and 100,000 for TOF.

	phases (list) – Phases to link to the new histogram. Use proj.phases() to link to
all defined phases.

	ibank (int) – provides a bank number for the instrument parameter file. The
default is None, corresponding to load the first bank.

	Νpoints (int) – the number of data points to be used for computing the
diffraction pattern. Defaults as None, which sets this to 2500. Do not specify
both Npoints and Tstep. Due to roundoff the actual number of points used may differ
by +-1 from Npoints. Must be below 25,000.

	Returns:

	A G2PwdrData object representing the histogram

	
add_single_histogram(datafile, phase=None, fmthint=None)

	Loads a powder data histogram or multiple powder histograms
into the project.

	Parameters:

	
	datafile (str) – A filename with the single crystal data file
to read. Note that in unix fashion, “~” can be used to indicate the
home directory (e.g. ~/G2data/data.hkl).

	phases – A phase to link to the new histogram. A
phase can be referenced by object, name, rId or number.
If not specified, no phase will be linked.

	fmthint (str) – If specified, only importers where the format name
(reader.formatName, as shown in Import menu) contains the
supplied string will be tried as importers. If not specified,
an error will be generated, as the file format will not distinguish
well between different data types.

	Returns:

	A G2Single object representing
the histogram

	
clone_powder_histogram(histref, newname, Y, Yerr=None)

	Creates a copy of a powder diffraction histogram with new Y values.
The X values are not changed. The number of Y values must match the
number of X values.

	Parameters:

	
	histref – The histogram object, the name of the histogram (str), or ranId
or histogram index.

	newname (str) – The name to be assigned to the new histogram

	Y (list) – A set of intensity values

	Yerr (list) – A set of uncertainties for the intensity values (may be None,
sets all weights to unity)

	Returns:

	the new histogram object (type G2PwdrData)

	
copyHistParms(sourcehist, targethistlist='all', modelist='all')

	Copy histogram information from one histogram to others

	Parameters:

	
	sourcehist – is a histogram object (G2PwdrData) or
a histogram name or the index number of the histogram

	targethistlist (list) – a list of histograms where each item in the
list can be a histogram object (G2PwdrData),
a histogram name or the index number of the histogram.
if the string ‘all’ (default value), then all histograms in
the project are used.

	modelist (list) – May be a list of sections to copy, which may
include ‘Background’, ‘Instrument Parameters’, ‘Limits’ and
‘Sample Parameters’ (items may be shortened to uniqueness and
capitalization is ignored, so [‘b’,’i’,’L’,’s’] will work.)
The default value, ‘all’ causes the listed sections to

	
copy_PDF(PDFobj, histogram)

	Creates a PDF entry that can be used to compute a PDF
as a copy of settings in an existing PDF (G2PDF)
object.
This places an entry in the project but G2PDF.calculate()
must be used to actually perform the PDF computation.

	Parameters:

	
	PDFobj – A G2PDF object which may be
in a separate project or the dict associated with the
PDF object (G2PDF.data).

	histogram – A reference to a histogram,
which can be reference by object, name, or number.

	Returns:

	A G2PDF object for the PDF entry

	
do_refinements(refinements=[{}], histogram='all', phase='all', outputnames=None, makeBack=False)

	
	Conducts one or a series of refinements according to the
	input provided in parameter refinements. This is a wrapper
around iter_refinements()

	Parameters:

	
	refinements (list) – A list of dictionaries specifiying changes to be made to
parameters before refinements are conducted.
See the Refinement recipe section for how this is defined.
If not specified, the default value is [{}], which performs a single
refinement step is performed with the current refinement settings.

	histogram (str) – Name of histogram for refinements to be applied
to, or ‘all’; note that this can be overridden for each refinement
step via a “histograms” entry in the dict.

	phase (str) – Name of phase for refinements to be applied to, or
‘all’; note that this can be overridden for each refinement
step via a “phases” entry in the dict.

	outputnames (list) – Provides a list of project (.gpx) file names
to use for each refinement step (specifying None skips the save step).
See save().
Note that this can be overridden using an “output” entry in the dict.

	makeBack (bool) – determines if a backup).bckX.gpx) file is made
before a refinement is performed. The default is False.

To perform a single refinement without changing any parameters, use this
call:

my_project.do_refinements([])

	
classmethod from_dict_and_names(gpxdict, names, filename=None)

	Creates a G2Project directly from
a dictionary and a list of names. If in doubt, do not use this.

	Returns:

	a G2Project

	
get_Constraints(ctype)

	Returns a list of constraints of the type selected.

	Parameters:

	ctype (str) – one of the following keywords: ‘Hist’, ‘HAP’, ‘Phase’, ‘Global’

	Returns:

	a list of constraints, see the
constraint definition descriptions. Note that
if this list is changed (for example by deleting elements or by changing them)
the constraints in the project are changed.

	
get_Controls(control, variable=None)

	Return project controls settings

	Parameters:

	
	control (str) – the item to be returned. See below for allowed values.

	variable (str) – a variable name as a str or
(as a GSASIIobj.G2VarObj object).
Used only with control set to “parmMin” or “parmMax”.

	Returns:

	The value for the control.

Allowed values for parameter control:

	cycles: the maximum number of cycles (returns int)

	sequential: the histograms used for a sequential refinement as a list
of histogram names or an empty list when in non-sequential mode.

	Reverse Seq: returns True or False. True indicates that fitting of the
sequence of histograms proceeds in reversed order.

	seqCopy: returns True or False. True indicates that results from
each sequential fit are used as the starting point for the next
histogram.

	parmMin & parmMax: retrieves a maximum or minimum value for
a refined parameter. Note that variable will be a GSAS-II
variable name, optionally with * specified for a histogram
or atom number. Return value will be a float.
(See Parameter Limits description.)

	Anything else returns the value in the Controls dict, if present. An
exception is raised if the control value is not present.

See also

set_Controls()

	
get_Covariance(varList)

	Returns the values and covariance matrix for a series of variable
parameters. as defined in the last refinement cycle

	Parameters:

	varList (tuple) – a list of variable names of form ‘<p>:<h>:<name>’

	Returns:

	(valueList,CovMatrix) where valueList contains the (n) values
in the same order as varList (also length n) and CovMatrix is a
(n x n) matrix. If any variable name is not found in the varyList
then None is returned.

Use this code, where sig provides standard uncertainties for
parameters and where covArray provides the correlation between
off-diagonal terms:

sig = np.sqrt(np.diag(covMatrix))
xvar = np.outer(sig,np.ones_like(sig))
covArray = np.divide(np.divide(covMatrix,xvar),xvar.T)

	
get_Frozen(histogram=None)

	Gets a list of Frozen variables.
(See Parameter Limits description.)
Note that use of this
will cause the project to be saved if not already done so.

	Parameters:

	histogram – A reference to a histogram,
which can be reference by object, name, or number. Used
for sequential fits only. If left as the default (None)
for a sequential fit, all Frozen variables in all
histograms are returned.

	Returns:

	a list containing variable names, as str values

	
get_ParmList()

	Returns a list of all the parameters defined in the
last refinement cycle

	Returns:

	a list of parameters or None if no refinement has been
performed.

	
get_Variable(var)

	Returns the value and standard uncertainty (esd) for a variable
parameters, as defined in the last refinement cycle

	Parameters:

	var (str) – a variable name of form ‘<p>:<h>:<name>’, such as
‘:0:Scale’

	Returns:

	(value,esd) if the parameter is refined or
(value, None) if the variable is in a constraint or is not
refined or None if the parameter is not found.

	
get_VaryList()

	Returns a list of the refined variables in the
last refinement cycle

	Returns:

	a list of variables or None if no refinement has been
performed.

	
histType(histname)

	Returns the type for histogram object associated with histname, or
None if it does not exist.

	Parameters:

	histname – The name of the histogram (str), or ranId or
(for powder) the histogram index.

	Returns:

	‘PWDR’ for a Powder histogram,
‘HKLF’ for a single crystal histogram, or
None if the histogram does not exist

See also

histogram()

	
histogram(histname)

	Returns the histogram object associated with histname, or None
if it does not exist.

	Parameters:

	histname – The name of the histogram (str), or ranId or
(for powder) the histogram index.

	Returns:

	A G2PwdrData object, or G2Single object, or
None if the histogram does not exist

See also

histograms()
phase()
phases()

	
histograms(typ=None)

	Return a list of all histograms, as G2PwdrData objects

For now this only finds Powder/Single Xtal histograms, since that is all that is
currently implemented in this module.

	Parameters:

	typ (ste) – The prefix (type) the histogram such as ‘PWDR ‘ for
powder or ‘HKLF ‘ for single crystal. If None
(the default) all known histograms types are found.

	Returns:

	a list of objects

See also

histogram()
phase()
phases()

	
hold_many(vars, ctype)

	Apply holds for all the variables in vars, for constraint of a given type.
This routine has been superceeded by add_Hold()

	Parameters:

	
	vars (list) – A list of variables to hold. Each may be a
GSASIIobj.G2VarObj object, a variable name (str), or a
list/tuple of arguments for make_var_obj().

	ctype (str) – A string constraint type specifier, passed directly to
add_constraint_raw() as consType. Should be one of “Hist”, “Phase”,
or “HAP” (“Global” not implemented).

	
image(imageRef)

	Gives an object representing the specified image in this project.

	Parameters:

	imageRef (str) – A reference to the desired image. Either the Image
tree name (str), the image’s index (int) or
a image object (G2Image)

	Returns:

	A G2Image object

	Raises:

	KeyError

See also

images()

	
imageMultiDistCalib(imageList=None, verbose=False)

	Invokes a global calibration fit (same as Image Controls/Calibration/Multi-distance Recalibrate
menu command) with images as multiple distance settings.
Note that for this to work properly, the initial calibration parameters
(center, wavelength, distance & tilts) must be close enough to converge.
This may produce a better result if run more than once.

See Image Calibration for example code.

	Parameters:

	imageList (str) – the images to include in the fit, if not specified
all images in the project will be included.

	Returns:

	parmDict,covData where parmDict has the refined parameters
and their values and covData is a dict containing the covariance matrix (‘covMatrix’),
the number of ring picks (‘obs’) the reduced Chi-squared (‘chisq’),
the names of the variables (‘varyList’) and their values (‘variables’)

	
images()

	Returns a list of all the images in the project.

	Returns:

	A list of G2Image objects

	
iter_refinements(refinements, histogram='all', phase='all', outputnames=None, makeBack=False)

	Conducts a series of refinements, iteratively. Stops after every
refinement and yields this project, to allow error checking or
logging of intermediate results. Parameter use is the same as for
do_refinements() (which calls this method).

>>> def checked_refinements(proj):
... for p in proj.iter_refinements(refs):
... # Track intermediate results
... log(p.histogram('0').residuals)
... log(p.phase('0').get_cell())
... # Check if parameter diverged, nonsense answer, or whatever
... if is_something_wrong(p):
... raise Exception("I need a human!")

	
link_histogram_phase(histogram, phase)

	Associates a given histogram and phase.

See also

histogram()
phase()

	
make_var_obj(phase=None, hist=None, varname=None, atomId=None, reloadIdx=True)

	Wrapper to create a G2VarObj. Takes either a string representation (“p:h:name:a”)
or individual names of phase, histogram, varname, and atomId.

Automatically converts string phase, hist, or atom names into the ID required
by G2VarObj.

Note that this will cause the project to be saved if not
already done so.

	
pdf(pdfRef)

	Gives an object representing the specified PDF entry in this project.

	Parameters:

	pdfRef – A reference to the desired image. Either the PDF
tree name (str), the pdf’s index (int) or
a PDF object (G2PDF)

	Returns:

	A G2PDF object

	Raises:

	KeyError

See also

pdfs()
G2PDF

	
pdfs()

	Returns a list of all the PDFs in the project.

	Returns:

	A list of G2PDF objects

	
phase(phasename)

	Gives an object representing the specified phase in this project.

	Parameters:

	phasename (str) – A reference to the desired phase. Either the phase
name (str), the phase’s ranId, the phase’s index (both int) or
a phase object (G2Phase)

	Returns:

	A G2Phase object

	Raises:

	KeyError

See also

histograms()
phase()
phases()

	
phases()

	Returns a list of all the phases in the project.

	Returns:

	A list of G2Phase objects

See also

histogram()
histograms()
phase()

	
refine(newfile=None, printFile=None, makeBack=False)

	Invoke a refinement for the project. The project is written to
the currently selected gpx file and then either a single or sequential refinement
is performed depending on the setting of ‘Seq Data’ in Controls
(set in get_Controls()).

	
reload()

	Reload self from self.filename

	
save(filename=None)

	Saves the project, either to the current filename, or to a new file.

Updates self.filename if a new filename provided

	
seqref()

	Returns a sequential refinement results object, if present

	Returns:

	A G2SeqRefRes object or None if not present

	
set_Controls(control, value, variable=None)

	Set project controls.

Note that use of this with control set to parmMin or parmMax
will cause the project to be saved if not already done so.

	Parameters:

	
	control (str) – the item to be set. See below for allowed values.

	value – the value to be set.

	variable (str) – used only with control set to “parmMin” or “parmMax”

Allowed values for control parameter:

	'cycles': sets the maximum number of cycles (value must be int)

	'sequential': sets the histograms to be used for a sequential refinement.
Use an empty list to turn off sequential fitting.
The values in the list may be the name of the histogram (a str), or
a ranId or index (int values), see histogram().

	'seqCopy': when True, the results from each sequential fit are used as
the starting point for the next. After each fit is is set to False.
Ignored for non-sequential fits.

	'Reverse Seq': when True, sequential refinement is performed on the
reversed list of histograms.

	'parmMin' & 'parmMax': set a maximum or minimum value for a refined
parameter. Note that variable will be a GSAS-II variable name,
optionally with * specified for a histogram or atom number and
value must be a float.
(See Parameter Limits description.)

See also

get_Controls()

	
set_Frozen(variable=None, histogram=None, mode='remove')

	Removes one or more Frozen variables (or adds one)
(See Parameter Limits description.)
Note that use of this
will cause the project to be saved if not already done so.

	Parameters:

	
	variable (str) – a variable name as a str or
(as a GSASIIobj.G2VarObj object). Should
not contain wildcards.
If None (default), all frozen variables are deleted
from the project, unless a sequential fit and
a histogram is specified.

	histogram – A reference to a histogram,
which can be reference by object, name, or number.
Used for sequential fits only.

	mode (str) – The default mode is to remove variables
from the appropriate Frozen list, but if the mode
is specified as ‘add’, the variable is added to the
list.

	Returns:

	True if the variable was added or removed, False
otherwise. Exceptions are generated with invalid requests.

	
set_refinement(refinement, histogram='all', phase='all')

	Set refinment flags at the project level to specified histogram(s)
or phase(s).

	Parameters:

	
	refinement (dict) – The refinements to be conducted

	histogram – Specifies either ‘all’ (default), a single histogram or
a list of histograms. Histograms may be specified as histogram objects
(see G2PwdrData), the histogram name (str) or the index number (int)
of the histogram in the project, numbered starting from 0.
Omitting the parameter or the string ‘all’ indicates that parameters in
all histograms should be set.

	phase – Specifies either ‘all’ (default), a single phase or
a list of phases. Phases may be specified as phase objects
(see G2Phase), the phase name (str) or the index number (int)
of the phase in the project, numbered starting from 0.
Omitting the parameter or the string ‘all’ indicates that parameters in
all phases should be set.

Note that refinement parameters are categorized as one of three types:

	Histogram parameters

	Phase parameters

	Histogram-and-Phase (HAP) parameters

See also

G2PwdrData.set_refinements()
G2PwdrData.clear_refinements()
G2Phase.set_refinements()
G2Phase.clear_refinements()
G2Phase.set_HAP_refinements()
G2Phase.clear_HAP_refinements()
G2Single.set_refinements()

	
update_ids()

	Makes sure all phases and histograms have proper hId and pId

	
class GSASIIscriptable.G2PwdrData(data, proj, name)

	Wraps a Powder Data Histogram.
The object contains these class variables:

	G2PwdrData.proj: contains a reference to the G2Project
object that contains this histogram

	G2PwdrData.name: contains the name of the histogram

	G2PwdrData.data: contains the histogram’s associated data in a dict,
as documented for the Powder Diffraction Tree.
The actual histogram values are contained in the ‘data’ dict item,
as documented for Data.

Scripts should not try to create a G2PwdrData object directly as
G2PwdrData.__init__() should be invoked from inside G2Project.

	
property Background

	Provides a list with with the Background parameters
for this histogram.

	Returns:

	list containing a list and dict with background values

	
EditSimulated(Tmin, Tmax, Tstep=None, Npoints=None)

	Change the parameters for an existing simulated powder histogram.
This will reset the previously computed “observed” pattern.

	Parameters:

	
	Tmin (float) – Minimum 2theta or TOF (microsec) for dataset to be simulated

	Tmax (float) – Maximum 2theta or TOF (usec) for dataset to be simulated

	Tstep (float) – Step size in 2theta or TOF (usec) for dataset to be simulated
Default is to compute this from Npoints.

	Νpoints (int) – the number of data points to be used for computing the
diffraction pattern. Defaults as None, which sets this to 2500. Do not specify
both Npoints and Tstep. Due to roundoff the actual nuber of points used may differ
by +-1 from Npoints. Must be below 25,000.

	
Export(fileroot, extension, fmthint=None)

	Write the histogram into a file. The path is specified by fileroot and
extension.

	Parameters:

	
	fileroot (str) – name of the file, optionally with a path (extension is
ignored)

	extension (str) – includes ‘.’, must match an extension in global
exportersByExtension[‘powder’] or a Exception is raised.

	fmthint (str) – If specified, the first exporter where the format
name (obj.formatName, as shown in Export menu) contains the
supplied string will be used. If not specified, an error
will be generated showing the possible choices.

	Returns:

	name of file that was written

	
Export_peaks(filename)

	Write the peaks file. The path is specified by filename
extension.

	Parameters:

	filename (str) – name of the file, optionally with a path,
includes an extension

	Returns:

	name of file that was written

	
property InstrumentParameters

	Provides a dictionary with with the Instrument Parameters
for this histogram.

	
LoadProfile(filename, bank=0)

	Reads a GSAS-II (new style) .instprm file and overwrites the current
parameters

	Parameters:

	
	filename (str) – instrument parameter file name, extension ignored if not
.instprm

	bank (int) – bank number to read, defaults to zero

	
property PeakList

	Provides a list of peaks parameters
for this histogram.

	Returns:

	a list of peaks, where each peak is a list containing
[pos,area,sig,gam]
(position, peak area, Gaussian width, Lorentzian width)

	
property Peaks

	Provides a dict with the Peak List parameters
for this histogram.

	Returns:

	dict with two elements where item
‘peaks’ is a list of peaks where each element is
[pos,pos-ref,area,area-ref,sig,sig-ref,gam,gam-ref],
where the -ref items are refinement flags and item
‘sigDict’ is a dict with possible items ‘Back;#’,
‘pos#’, ‘int#’, ‘sig#’, ‘gam#’

	
property SampleParameters

	Provides a dictionary with with the Sample Parameters
for this histogram.

	
SaveProfile(filename)

	Writes a GSAS-II (new style) .instprm file

	
add_back_peak(pos, int, sig, gam, refflags=[])

	Adds a background peak to the Background parameters

	Parameters:

	
	pos (float) – position of peak, a 2theta or TOF value

	int (float) – integrated intensity of background peak, usually large

	sig (float) – Gaussian width of background peak, usually large

	gam (float) – Lorentzian width of background peak, usually unused (small)

	refflags (list) – a list of 1 to 4 boolean refinement flags for
pos,int,sig & gam, respectively (use [0,1] to refine int only).
Defaults to [] which means nothing is refined.

	
add_peak(area, dspace=None, Q=None, ttheta=None)

	Adds a single peak to the peak list
:param float area: peak area
:param float dspace: peak position as d-space (A)
:param float Q: peak position as Q (A-1)
:param float ttheta: peak position as 2Theta (deg)

Note: only one of the parameters: dspace, Q or ttheta may be specified.
See Peak Fitting for an example.

	
calc_autobkg(opt=0, logLam=None)

	
	Sets fixed background points using the pybaselines Whittaker
	algorithm.

	Parameters:

	
	opt (int) – 0 for ‘arpls’ or 1 for ‘iarpls’. Default is 0.

	logLam (float) – log_10 of the Lambda value used in the
pybaselines.whittaker.arpls/.iarpls computation. If None (default)
is provided, a guess is taken for an appropriate value based
on the number of points.

	Returns:

	the array of computed background points

	
clear_refinements(refs)

	Clears the PWDR refinement parameter ‘key’ and its associated value.

	Parameters:

	refs (dict) – A dictionary of parameters to clear.
See the Histogram parameters table for what can be specified.

	
del_back_peak(peaknum)

	Removes a background peak from the Background parameters

	Parameters:

	peaknum (int) – the number of the peak (starting from 0)

	
fit_fixed_points()

	Attempts to apply a background fit to the fixed points currently specified.

	
getHistEntryList(keyname='')

	Returns a dict with histogram setting values.

	Parameters:

	keyname (str) – an optional string. When supplied only entries
where at least one key contains the specified string are reported.
Case is ignored, so ‘sg’ will find entries where one of the keys
is ‘SGdata’, etc.

	Returns:

	a set of histogram dict keys.

See G2Phase.getHAPentryList() for a related example.

See also

getHistEntryValue()
setHistEntryValue()

	
getHistEntryValue(keylist)

	Returns the histogram control value associated with a list of keys.
Where the value returned is a list, it may be used as the target of
an assignment (as in
getHistEntryValue(...)[...] = val)
to set a value inside a list.

	Parameters:

	keylist (list) – a list of dict keys, typically as returned by
getHistEntryList().

	Returns:

	a histogram setting; may be a int, float, bool, list,…

See G2Phase.getHAPentryValue() for a related example.

	
get_wR()

	returns the overall weighted profile R factor for a histogram

	Returns:

	a wR value as a percentage or None if not defined

	
getdata(datatype)

	Provides access to the histogram data of the selected data type

	Parameters:

	datatype (str) – must be one of the following values (case is ignored)

	’X’: the 2theta or TOF values for the pattern

	’Yobs’: the observed intensity values

	’Yweight’: the weights for each data point (1/sigma**2)

	’Ycalc’: the computed intensity values

	’Background’: the computed background values

	’Residual’: the difference between Yobs and Ycalc (obs-calc)

	Returns:

	an numpy MaskedArray with data values of the requested type

	
ref_back_peak(peaknum, refflags=[])

	Sets refinement flag for a background peak

	Parameters:

	
	peaknum (int) – the number of the peak (starting from 0)

	refflags (list) – a list of 1 to 4 boolean refinement flags for
pos,int,sig & gam, respectively. If a flag is not specified
it defaults to False (use [0,1] to refine int only).
Defaults to [] which means nothing is refined.

	
refine_peaks(mode='useIP')

	Causes a refinement of peak position, background and instrument parameters

	Parameters:

	mode (str) – this determines how peak widths are determined. If
the value is ‘useIP’ (the default) then the width parameter values (sigma, gamma,
alpha,…) are computed from the histogram’s instrument parameters. If the
value is ‘hold’, then peak width parameters are not overridden. In
this case, it is not possible to refine the instrument parameters
associated with the peak widths and an attempt to do so will result in
an error.

	Returns:

	a list of dicts with refinement results. Element 0 has uncertainties
on refined values (also placed in self.data[‘Peak List’][‘sigDict’])
element 1 has the peak fit result, element 2 has the peak fit uncertainties
and element 3 has r-factors from the fit.
(These are generated in GSASIIpwd.DoPeakFit()).

	
reflections()

	Returns a dict with an entry for every phase in the
current histogram. Within each entry is a dict with keys
‘RefList’ (reflection list, see
Powder Reflections),
‘Type’ (histogram type), ‘FF’
(form factor information), ‘Super’ (True if this is superspace
group).

	
property residuals

	Provides a dictionary with with the R-factors for this histogram.
Includes the weighted and unweighted profile terms (R, Rb, wR, wRb, wRmin)
as well as the Bragg R-values for each phase (ph:H:Rf and ph:H:Rf^2).

	
setHistEntryValue(keylist, newvalue)

	Sets a histogram control value associated with a list of keys.

See G2Phase.setHAPentryValue() for a related example.

	Parameters:

	keylist (list) –
	a list of dict keys, typically as returned by
	getHistEntryList().

	param newvalue:

	a new value for the hist setting. The type must be
the same as the initial value, but if the value is a container
(list, tuple, np.array,…) the elements inside are not checked.

	
set_background(key, value)

	Set background parameters (this serves a similar function as in
set_refinements(), but with a simplified interface).

	Parameters:

	
	key (str) – a string that defines the background parameter that will
be changed. Must appear in the table below.

	key name

	type of value

	meaning of value

	fixedHist

	int, str,
None or
G2PwdrData

	reference to a histogram in the current
project or None to remove the reference.

	fixedFileMult

	float

	multiplier applied to intensities in
the background histogram where a value
of -1.0 means full subtraction of
the background histogram.

	value – a value to set the selected background parameter. The meaning
and type for this parameter is listed in the table above.

	
set_peakFlags(peaklist=None, area=None, pos=None, sig=None, gam=None, alp=None, bet=None)

	Set refinement flags for peaks

	Parameters:

	
	peaklist (list) – a list of peaks to change flags. If None (default), changes
are made to all peaks.

	area (bool) – Sets or clears the refinement flag for the peak area value.
If None (the default), no change is made.

	pos (bool) – Sets or clears the refinement flag for the peak position value.
If None (the default), no change is made.

	sig (bool) – Sets or clears the refinement flag for the peak sigma (Gaussian width) value.
If None (the default), no change is made.

	gam (bool) – Sets or clears the refinement flag for the peak gamma (Lorentzian width) value.
If None (the default), no change is made.

	alp (bool) – Sets or clears the refinement flag for the peak alpha (TOF width) value.
If None (the default), no change is made.

	bet (bool) – Sets or clears the refinement flag for the peak beta (TOF width) value.
If None (the default), no change is made.

Note that when peaks are first created the area flag is on and the other flags are
initially off.

Example:

set_peakFlags(sig=False,gam=True)

causes the sig refinement flag to be cleared and the gam flag to be set, in both cases for
all peaks. The position and area flags are not changed from their previous values.

	
set_refinements(refs)

	Sets the PWDR histogram refinement parameter ‘key’ to the specification ‘value’.

	Parameters:

	refs (dict) – A dictionary of the parameters to be set. See the
Histogram parameters table for a description of
what these dictionaries should be.

	Returns:

	None

	
y_calc()

	Returns the calculated intensity values; better to
use getdata()

	
exception GSASIIscriptable.G2ScriptException

	

	
class GSASIIscriptable.G2SeqRefRes(data, proj)

	Wrapper for a Sequential Refinement Results tree entry, containing the
results for a refinement

Scripts should not try to create a G2SeqRefRes object directly as
this object will be created when a .gpx project file is read.

As an example:

from __future__ import division, print_function
import os,sys
sys.path.insert(0,'/Users/toby/software/G2/GSASII')
PathWrap = lambda fil: os.path.join('/Users/toby/Scratch/SeqTut2019Mar',fil)
import GSASIIscriptable as G2sc
gpx = G2sc.G2Project(PathWrap('scr4.gpx'))
seq = gpx.seqref()
lbl = ('a','b','c','alpha','beta','gamma','Volume')
for j,h in enumerate(seq.histograms()):
 cell,cellU,uniq = seq.get_cell_and_esd(1,h)
 print(h)
 print([cell[i] for i in list(uniq)+[6]])
 print([cellU[i] for i in list(uniq)+[6]])
 print('')
print('printed',[lbl[i] for i in list(uniq)+[6]])

See also

G2Project.seqref()

	
RefData(hist)

	Provides access to the output from a particular histogram

	Parameters:

	hist – Specify a histogram or using the histogram name (str)
or the index number (int) of the histogram in the sequential
refinement (not the project), numbered as in the project tree
starting from 0.

	Returns:

	a list of dicts where the first element has sequential
refinement results and the second element has the contents of
the histogram tree items.

	
get_Covariance(hist, varList)

	Returns the values and covariance matrix for a series of variable
parameters, as defined for the selected histogram
in the last sequential refinement cycle

	Parameters:

	
	hist – Specify a histogram or using the histogram name (str)
or the index number (int) of the histogram in the sequential
refinement (not the project), numbered as in the project tree
starting from 0.

	varList (tuple) – a list of variable names of form ‘<p>:<h>:<name>’

	Returns:

	(valueList,CovMatrix) where valueList contains the (n) values
in the same order as varList (also length n) and CovMatrix is a
(n x n) matrix. If any variable name is not found in the varyList
then None is returned.

Use this code, where sig provides standard uncertainties for
parameters and where covArray provides the correlation between
off-diagonal terms:

sig = np.sqrt(np.diag(covMatrix))
xvar = np.outer(sig,np.ones_like(sig))
covArray = np.divide(np.divide(covMatrix,xvar),xvar.T)

	
get_ParmList(hist)

	Returns a list of all the parameters defined in the
last refinement cycle for the selected histogram

	Parameters:

	hist – Specify a histogram or using the histogram name (str)
or the index number (int) of the histogram in the sequential
refinement (not the project), numbered as in the project tree
starting from 0.

	Returns:

	a list of parameters or None if no refinement has been
performed.

	
get_Variable(hist, var)

	Returns the value and standard uncertainty (esd) for a variable
parameters, as defined for the selected histogram
in the last sequential refinement cycle

	Parameters:

	
	hist – Specify a histogram or using the histogram name (str)
or the index number (int) of the histogram in the sequential
refinement (not the project), numbered as in the project tree
starting from 0.

	var (str) – a variable name of form ‘<p>:<h>:<name>’, such as
‘:0:Scale’

	Returns:

	(value,esd) if the parameter is refined or
(value, None) if the variable is in a constraint or is not
refined or None if the parameter is not found.

	
get_VaryList(hist)

	Returns a list of the refined variables in the
last refinement cycle for the selected histogram

	Parameters:

	hist – Specify a histogram or using the histogram name (str)
or the index number (int) of the histogram in the sequential
refinement (not the project), numbered starting from 0.

	Returns:

	a list of variables or None if no refinement has been
performed.

	
get_cell_and_esd(phase, hist)

	Returns a vector of cell lengths and esd values

	Parameters:

	
	phase – A phase, which may be specified as a phase object
(see G2Phase), the phase name (str) or the index number (int)
of the phase in the project, numbered starting from 0.

	hist – Specify a histogram or using the histogram name (str)
or the index number (int) of the histogram in the sequential
refinement (not the project), numbered as in in the project tree
starting from 0.

	Returns:

	cell,cellESD,uniqCellIndx where cell (list)
with the unit cell parameters (a,b,c,alpha,beta,gamma,Volume);
cellESD are the standard uncertainties on the 7 unit cell
parameters; and uniqCellIndx is a tuple with indicies for the
unique (non-symmetry determined) unit parameters (e.g.
[0,2] for a,c in a tetragonal cell)

	
histograms()

	returns a list of histograms in the squential fit

	
class GSASIIscriptable.G2Single(data, proj, name)

	Wrapper for a HKLF tree entry, containing a single crystal histogram
Note that in a GSASIIscriptable script, instances of G2Single will be
created by calls to G2Project.histogram(),
G2Project.histograms(), or G2Project.add_single_histogram().
Scripts should not try to create a G2Single object directly.

	This object contains these class variables:
	
	G2Single.proj: contains a reference to the G2Project
object that contains this histogram

	G2Single.name: contains the name of the histogram

	G2Single.data: contains the histogram’s associated data in a dict,
as documented for the Single Crystal Tree Item.
This contains the actual histogram values, as documented for Data.

Example use of G2Single:

gpx0 = G2sc.G2Project('HTO_base.gpx')
gpx0.add_single_histogram('HTO_xray/xtal1/xs2555a.hkl',0,fmthint='Shelx HKLF 4')
gpx0.save('HTO_scripted.gpx')

This opens an existing GSAS-II project file and adds a single
crystal dataset that is linked to the first phase and saves it
under a new name.

See also

add_single_histogram()
histogram()
histograms()
link_histogram_phase()

	
clear_refinements(refs)

	Clears the HKLF refinement parameter ‘key’ and its associated value.

	Parameters:

	refs (dict) – A dictionary of parameters to clear.
See the Histogram parameters table for what can be specified.

Example:

hist.clear_refinements(['Scale','Es','Flack'])
hist.clear_refinements({'Scale':True,'Es':False,'Flack':True})

Note that the two above commands are equivalent: the values specified
in the dict in the second command are ignored.

	
set_refinements(refs)

	Sets the HKLF histogram refinement parameter ‘key’ to the
specification ‘value’.

	Parameters:

	refs (dict) – A dictionary of the parameters to be set. See the
Histogram parameters table for a description of
what these dictionaries should be.

Example:

hist.set_refinements({'Scale':True,'Es':False,'Flack':True})

	
GSASIIscriptable.GenerateReflections(spcGrp, cell, Qmax=None, dmin=None, TTmax=None, wave=None)

	Generates the crystallographically unique powder diffraction reflections
for a lattice and space group (see GSASIIlattice.GenHLaue()).

	Parameters:

	
	spcGrp (str) – A GSAS-II formatted space group (with spaces between
axial fields, e.g. ‘P 21 21 21’ or ‘P 42/m m c’). Note that non-standard
space groups, such as ‘P 21/n’ or ‘F -1’ are allowed (see
GSASIIspc.SpcGroup()).

	cell (list) – A list/tuple with six unit cell constants,
(a, b, c, alpha, beta, gamma) with values in Angstroms/degrees.
Note that the cell constants are not checked for consistency
with the space group.

	Qmax (float) – Reflections up to this Q value are computed
(do not use with dmin or TTmax)

	dmin (float) – Reflections with d-space above this value are computed
(do not use with Qmax or TTmax)

	TTmax (float) – Reflections up to this 2-theta value are computed
(do not use with dmin or Qmax, use of wave is required.)

	wave (float) – wavelength in Angstroms for use with TTmax (ignored
otherwise.)

	Returns:

	a list of reflections, where each reflection contains four items:
h, k, l, d, where d is the d-space (Angstroms)

Example:

>>> import os,sys
>>> sys.path.insert(0,'/Users/toby/software/G2/GSASII')
>>> import GSASIIscriptable as G2sc
GSAS-II binary directory: /Users/toby/software/G2/GSASII/bin
17 values read from config file /Users/toby/software/G2/GSASII/config.py
>>> refs = G2sc.GenerateReflections('P 1',
... (5.,6.,7.,90.,90.,90),
... TTmax=20,wave=1)
>>> for r in refs: print(r)
...
[0, 0, 1, 7.0]
[0, 1, 0, 6.0]
[1, 0, 0, 5.0]
[0, 1, 1, 4.55553961419178]
[0, 1, -1, 4.55553961419178]
[1, 0, 1, 4.068667356033675]
[1, 0, -1, 4.068667356033674]
[1, 1, 0, 3.8411063979868794]
[1, -1, 0, 3.8411063979868794]

	
GSASIIscriptable.IPyBrowse(args)

	Load a .gpx file and then open a IPython shell to browse it:

usage: GSASIIscriptable.py browse [-h] files [files ...]

positional arguments:

files list of files to browse

optional arguments:

-h, --help show this help message and exit

	
GSASIIscriptable.LoadDictFromProjFile(ProjFile)

	Read a GSAS-II project file and load items to dictionary

	Parameters:

	ProjFile (str) – GSAS-II project (name.gpx) full file name

	Returns:

	Project,nameList, where

	Project (dict) is a representation of gpx file following the GSAS-II tree structure
for each item: key = tree name (e.g. ‘Controls’,’Restraints’,etc.), data is dict
data dict = {‘data’:item data whch may be list, dict or None,’subitems’:subdata (if any)}

	nameList (list) has names of main tree entries & subentries used to reconstruct project file

Example for fap.gpx:

Project = { #NB:dict order is not tree order
 'Phases':{'data':None,'fap':{phase dict}},
 'PWDR FAP.XRA Bank 1':{'data':[histogram data list],'Comments':comments,'Limits':limits, etc},
 'Rigid bodies':{'data': {rigid body dict}},
 'Covariance':{'data':{covariance data dict}},
 'Controls':{'data':{controls data dict}},
 'Notebook':{'data':[notebook list]},
 'Restraints':{'data':{restraint data dict}},
 'Constraints':{'data':{constraint data dict}}]
 }
nameList = [#NB: reproduces tree order
 ['Notebook',],
 ['Controls',],
 ['Covariance',],
 ['Constraints',],
 ['Restraints',],
 ['Rigid bodies',],
 ['PWDR FAP.XRA Bank 1',
 'Comments',
 'Limits',
 'Background',
 'Instrument Parameters',
 'Sample Parameters',
 'Peak List',
 'Index Peak List',
 'Unit Cells List',
 'Reflection Lists'],
 ['Phases', 'fap']
]

	
GSASIIscriptable.LoadG2fil()

	Setup GSAS-II importers.
Delay importing this module when possible, it is slow.
Multiple calls are not. Only the first does anything.

	
GSASIIscriptable.PreSetup(data)

	Create part of an initial (empty) phase dictionary

from GSASIIphsGUI.py, near end of UpdatePhaseData

Author: Jackson O’Donnell (jacksonhodonnell .at. gmail.com)

	
GSASIIscriptable.Readers = {'Image': [], 'Phase': [], 'Pwdr': []}

	Readers by reader type

	
GSASIIscriptable.SaveDictToProjFile(Project, nameList, ProjFile)

	Save a GSAS-II project file from dictionary/nameList created by LoadDictFromProjFile

	Parameters:

	
	Project (dict) – representation of gpx file following the GSAS-II
tree structure as described for LoadDictFromProjFile

	nameList (list) – names of main tree entries & subentries used to reconstruct project file

	ProjFile (str) – full file name for output project.gpx file (including extension)

	
GSASIIscriptable.SetDefaultDData(dType, histoName, NShkl=0, NDij=0)

	Create an initial Histogram dictionary

Author: Jackson O’Donnell (jacksonhodonnell .at. gmail.com)

	
GSASIIscriptable.SetPrintLevel(level)

	Set the level of output from calls to GSASIIfiles.G2Print(),
which should be used in place of print() where possible. This is a
wrapper for GSASIIfiles.G2SetPrintLevel() so that this routine is
documented here.

	Parameters:

	level (str) – a string used to set the print level, which may be
‘all’, ‘warn’, ‘error’ or ‘none’.
Note that capitalization and extra letters in level are ignored, so
‘Warn’, ‘warnings’, etc. will all set the mode to ‘warn’

	
GSASIIscriptable.SetupGeneral(data, dirname)

	Initialize phase data.

	
GSASIIscriptable.add(args)

	Implements the add command-line subcommand. This adds histograms and/or phases to GSAS-II project:

usage: GSASIIscriptable.py add [-h] [-d HISTOGRAMS [HISTOGRAMS ...]]
 [-i IPARAMS [IPARAMS ...]]
 [-hf HISTOGRAMFORMAT] [-p PHASES [PHASES ...]]
 [-pf PHASEFORMAT] [-l HISTLIST [HISTLIST ...]]
 filename

positional arguments:

filename the project file to open. Should end in .gpx

optional arguments:

-h, --help show this help message and exit
-d HISTOGRAMS [HISTOGRAMS ...], --histograms HISTOGRAMS [HISTOGRAMS ...]
 list of datafiles to add as histograms
-i IPARAMS [IPARAMS ...], --iparams IPARAMS [IPARAMS ...]
 instrument parameter file, must be one for every
 histogram
-hf HISTOGRAMFORMAT, --histogramformat HISTOGRAMFORMAT
 format hint for histogram import. Applies to all
 histograms
-p PHASES [PHASES ...], --phases PHASES [PHASES ...]
 list of phases to add. phases are automatically
 associated with all histograms given.
-pf PHASEFORMAT, --phaseformat PHASEFORMAT
 format hint for phase import. Applies to all phases.
 Example: -pf CIF
-l HISTLIST [HISTLIST ...], --histlist HISTLIST [HISTLIST ...]
 list of histgram indices to associate with added
 phases. If not specified, phases are associated with
 all previously loaded histograms. Example: -l 2 3 4

	
GSASIIscriptable.blkSize = 128

	Integration block size; 128 or 256 seems to be optimal for CPU use, but 128 uses
less memory, must be <=1024 (for polymask/histogram3d)

	
GSASIIscriptable.calcMaskMap(imgprms, mskprms)

	Computes a set of blocked mask arrays for a set of image controls and mask parameters.
This capability is also provided with G2Image.IntMaskMap().

	
GSASIIscriptable.calcThetaAzimMap(imgprms)

	Computes the set of blocked arrays for theta-azimuth mapping from
a set of image controls, which can be cached and reused for
integration of multiple images with the same calibration parameters.
This capability is also provided with G2Image.IntThetaAzMap().

	
GSASIIscriptable.create(args)

	Implements the create command-line subcommand. This creates a GSAS-II project, optionally adding histograms and/or phases:

usage: GSASIIscriptable.py create [-h] [-d HISTOGRAMS [HISTOGRAMS ...]]
 [-i IPARAMS [IPARAMS ...]]
 [-p PHASES [PHASES ...]]
 filename

positional arguments:

filename the project file to create. should end in .gpx

optional arguments:

-h, --help show this help message and exit
-d HISTOGRAMS [HISTOGRAMS ...], --histograms HISTOGRAMS [HISTOGRAMS ...]
 list of datafiles to add as histograms
-i IPARAMS [IPARAMS ...], --iparams IPARAMS [IPARAMS ...]
 instrument parameter file, must be one for every
 histogram
-p PHASES [PHASES ...], --phases PHASES [PHASES ...]
 list of phases to add. phases are automatically
 associated with all histograms given.

	
GSASIIscriptable.dictDive(d, search='', keylist=[], firstcall=True, l=None)

	Recursive routine to scan a nested dict. Reports a list of keys
and the associated type and value for that key.

	Parameters:

	
	d (dict) – a dict that will be scanned

	search (str) – an optional search string. If non-blank,
only entries where one of the keys constains search (case ignored)

	keylist (list) – a list of keys to apply to the dict.

	firstcall (bool) – do not specify

	l (list) – do not specify

	Returns:

	a list of keys located by this routine
in form [([keylist], type, value),…] where if keylist is [‘a’,’b’,’c’]
then d[[‘a’][‘b’][‘c’] will have the value.

This routine can be called in a number of ways, as are shown in a few
examples:

>>> for i in G2sc.dictDive(p.data['General'],'paw'): print(i)
...
(['Pawley dmin'], <class 'float'>, 1.0)
(['doPawley'], <class 'bool'>, False)
(['Pawley dmax'], <class 'float'>, 100.0)
(['Pawley neg wt'], <class 'float'>, 0.0)
>>>
>>> for i in G2sc.dictDive(p.data,'paw',['General']): print(i)
...
(['General', 'Pawley dmin'], <class 'float'>, 1.0)
(['General', 'doPawley'], <class 'bool'>, False)
(['General', 'Pawley dmax'], <class 'float'>, 100.0)
(['General', 'Pawley neg wt'], <class 'float'>, 0.0)
>>>
>>> for i in G2sc.dictDive(p.data,'',['General','doPawley']): print(i)
...
(['General', 'doPawley'], <class 'bool'>, False)

	
GSASIIscriptable.dump(args)

	Implements the dump command-line subcommand, which shows the contents of a GSAS-II project:

usage: GSASIIscriptable.py dump [-h] [-d] [-p] [-r] files [files ...]

positional arguments:

files

optional arguments:

-h, --help show this help message and exit
-d, --histograms list histograms in files, overrides --raw
-p, --phases list phases in files, overrides --raw
-r, --raw dump raw file contents, default

	
GSASIIscriptable.export(args)

	Implements the export command-line subcommand: Exports phase as CIF:

usage: GSASIIscriptable.py export [-h] gpxfile phase exportfile

positional arguments:

gpxfile the project file from which to export
phase identifier of phase to export
exportfile the .cif file to export to

optional arguments:

-h, --help show this help message and exit

	
GSASIIscriptable.exportersByExtension = {}

	Specifies the list of extensions that are supported for Powder data export

	
GSASIIscriptable.import_generic(filename, readerlist, fmthint=None, bank=None)

	Attempt to import a filename, using a list of reader objects.

Returns the first reader object which worked.

	
GSASIIscriptable.installScriptingShortcut()

	Creates a file named G2script in the current Python site-packages directory.
This is equivalent to the “Install GSASIIscriptable shortcut” command in the GUI’s
File menu. Once this is done, a shortcut for calling GSASIIscriptable is created,
where the command:

>>> import G2script as G2sc

will provide access to GSASIIscriptable without changing the sys.path; also see
Shortcut for Scripting Access.

Note that this only affects the current Python installation. If more than one
Python installation will be used with GSAS-II (for example because different
conda environments are used), this command should be called from within each
Python environment.

If more than one GSAS-II installation will be used with a Python installation,
this shortcut can only be used with one of them.

	
GSASIIscriptable.load_iprms(instfile, reader, bank=None)

	Loads instrument parameters from a file, and edits the
given reader.

Returns a 2-tuple of (Iparm1, Iparm2) parameters

	
GSASIIscriptable.load_pwd_from_reader(reader, instprm, existingnames=[], bank=None)

	Loads powder data from a reader object, and assembles it into a GSASII data tree.

	Returns:

	(name, tree) - 2-tuple of the histogram name (str), and data

Author: Jackson O’Donnell (jacksonhodonnell .at. gmail.com)

	
GSASIIscriptable.main()

	The command-line interface for calling GSASIIscriptable as a shell command,
where it is expected to be called as:

python GSASIIscriptable.py <subcommand> <file.gpx> <options>

The following subcommands are defined:

	create, see create()

	add, see add()

	dump, see dump()

	refine, see refine()

	export, export()

	browse, see IPyBrowse()

See also

create()
add()
dump()
refine()
export()
IPyBrowse()

	
GSASIIscriptable.make_empty_project(author=None, filename=None)

	Creates an dictionary in the style of GSASIIscriptable, for an empty
project.

If no author name or filename is supplied, ‘no name’ and
<current dir>/test_output.gpx are used , respectively.

Returns: project dictionary, name list

Author: Jackson O’Donnell (jacksonhodonnell .at. gmail.com)

	
GSASIIscriptable.patchControls(Controls)

	patch routine to convert variable names used in parameter limits
to G2VarObj objects
(See Parameter Limits description.)

	
GSASIIscriptable.refine(args)

	
	Implements the refine command-line subcommand:
	conducts refinements on GSAS-II projects according to a JSON refinement dict:

usage: GSASIIscriptable.py refine [-h] gpxfile [refinements]

positional arguments:

gpxfile the project file to refine
refinements json file of refinements to apply. if not present refines file
 as-is

optional arguments:

-h, --help show this help message and exit

 \(\renewcommand\AA{\text{Å}}\)

4. Indices

4.1. General Index

 \(\renewcommand\AA{\text{Å}}\)

References to the GSAS-II Developer’s Documentation [https://gsas-ii.readthedocs.io/en/latest/]

Constraints_processing:
See the Constraints Processing [https://gsas-ii.readthedocs.io/en/latest/GSASIImapvars.html#constraint-processing] from GSASIImapvars.

 \(\renewcommand\AA{\text{Å}}\)

References to the GSAS-II Developer’s Documentation [https://gsas-ii.readthedocs.io/en/latest/]

Imports:
See the Import models documentation [https://gsas-ii.readthedocs.io/en/latest/imports.html#gsas-ii-import-modules]
for information on reading data files.

 Python Module Index

 g

 		 	

 		
 g	

 	
 	
 GSASIIobj	

 	
 	
 GSASIIscriptable	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | Y

_

 	
 	__eq__() (GSASIIobj.G2VarObj method)

 	__hash__() (GSASIIobj.G2VarObj method)

 	__init__() (GSASIIobj.ExpressionCalcObj method)

 	(GSASIIobj.ExpressionObj method)

 	(GSASIIobj.G2Exception method)

 	(GSASIIobj.G2RefineCancel method)

 	(GSASIIobj.G2VarObj method)

 	(GSASIIobj.ImportBaseclass method)

 	(GSASIIobj.ImportImage method)

 	(GSASIIobj.ImportPDFData method)

 	(GSASIIobj.ImportPhase method)

 	(GSASIIobj.ImportPowderData method)

 	(GSASIIobj.ImportReflectometryData method)

 	(GSASIIobj.ImportSmallAngleData method)

 	(GSASIIobj.ImportStructFactor method)

 	(GSASIIobj.ShowTiming method)

 	
 	__repr__() (GSASIIobj.G2VarObj method)

 	__str__() (GSASIIobj.G2Exception method)

 	(GSASIIobj.G2RefineCancel method)

 	(GSASIIobj.G2VarObj method)

 	__weakref__ (GSASIIobj.ExpressionCalcObj attribute)

 	(GSASIIobj.ExpressionObj attribute)

 	(GSASIIobj.G2Exception attribute)

 	(GSASIIobj.G2RefineCancel attribute)

 	(GSASIIobj.G2VarObj attribute)

 	(GSASIIobj.ImportBaseclass attribute)

 	(GSASIIobj.ImportBaseclass.ImportException attribute)

 	(GSASIIobj.ShowTiming attribute)

 	_lookup() (in module GSASIIobj)

 	_show() (GSASIIobj.G2VarObj method)

A

 	
 	add() (in module GSASIIscriptable)

 	add_atom() (GSASIIscriptable.G2Phase method)

 	add_back_peak() (GSASIIscriptable.G2PwdrData method)

 	add_constraint_raw() (GSASIIscriptable.G2Project method)

 	add_EqnConstr() (GSASIIscriptable.G2Project method)

 	add_EquivConstr() (GSASIIscriptable.G2Project method)

 	add_HoldConstr() (GSASIIscriptable.G2Project method)

 	add_image() (GSASIIscriptable.G2Project method)

 	add_NewVarConstr() (GSASIIscriptable.G2Project method)

 	add_PDF() (GSASIIscriptable.G2Project method)

 	add_peak() (GSASIIscriptable.G2PwdrData method)

 	add_phase() (GSASIIscriptable.G2Project method)

 	
 	add_powder_histogram() (GSASIIscriptable.G2Project method)

 	add_simulated_powder_histogram() (GSASIIscriptable.G2Project method)

 	add_single_histogram() (GSASIIscriptable.G2Project method)

 	addDistRestraint() (GSASIIscriptable.G2Phase method)

 	AddPhase2Index() (in module GSASIIobj)

 	ADP (GSASIIscriptable.G2AtomRecord property)

 	adp_flag (GSASIIscriptable.G2AtomRecord property)

 	assgnVars (GSASIIobj.ExpressionObj attribute)

 	atom() (GSASIIscriptable.G2Phase method)

 	AtomIdLookup (in module GSASIIobj)

 	AtomRanIdLookup (in module GSASIIobj)

 	Atoms record description

 	atoms() (GSASIIscriptable.G2Phase method)

B

 	
 	Background (GSASIIscriptable.G2PwdrData property)

 	
 	Banks (GSASIIobj.ImportStructFactor attribute)

 	blkSize (in module GSASIIscriptable)

C

 	
 	calc_autobkg() (GSASIIscriptable.G2PwdrData method)

 	calcMaskMap() (in module GSASIIscriptable)

 	calcThetaAzimMap() (in module GSASIIscriptable)

 	calculate() (GSASIIscriptable.G2PDF method)

 	CheckVars() (GSASIIobj.ExpressionObj method)

 	CIFValidator() (GSASIIobj.ImportBaseclass method)

 	clear_HAP_refinements() (GSASIIscriptable.G2Phase method)

 	clear_refinements() (GSASIIscriptable.G2Phase method)

 	(GSASIIscriptable.G2PwdrData method)

 	(GSASIIscriptable.G2Single method)

 	clearDistRestraint() (GSASIIscriptable.G2Phase method)

 	clearImageCache() (GSASIIscriptable.G2Image method)

 	clearPixelMask() (GSASIIscriptable.G2Image method)

 	clone_powder_histogram() (GSASIIscriptable.G2Project method)

 	
 	compiledExpr (GSASIIobj.ExpressionCalcObj attribute)

 	CompileVarDesc() (in module GSASIIobj)

 	composition (GSASIIscriptable.G2Phase property)

 	ComputeWorstFit() (GSASIIscriptable.G2Project method)

 	Constraint definition object description

 	Constraints object description

 	ContentsValidator() (GSASIIobj.ImportBaseclass method)

 	ControlList (GSASIIscriptable.G2Image attribute)

 	coordinates (GSASIIscriptable.G2AtomRecord property)

 	copy_PDF() (GSASIIscriptable.G2Project method)

 	copyHAPvalues() (GSASIIscriptable.G2Phase method)

 	copyHistParms() (GSASIIscriptable.G2Project method)

 	Covariance description

 	create() (in module GSASIIscriptable)

 	CreatePDFitems() (in module GSASIIobj)

D

 	
 	
 Data object descriptions

 	Atoms record

 	Constraint Definition

 	Constraints

 	Covariance

 	Drawing atoms record

 	Phase

 	Powder Data

 	Powder Reflections

 	Rigid Body Data

 	Single crystal data

 	Single Crystal Reflections

 	Space Group Data

 	Superspace Group Data

 	
 	DefaultControls (in module GSASIIobj)

 	del_back_peak() (GSASIIscriptable.G2PwdrData method)

 	density (GSASIIscriptable.G2Phase property)

 	dictDive() (in module GSASIIscriptable)

 	do_refinements() (GSASIIscriptable.G2Project method)

 	Drawing atoms record description

 	dump() (in module GSASIIscriptable)

E

 	
 	EditExpression() (GSASIIobj.ExpressionObj method)

 	EditSimulated() (GSASIIscriptable.G2PwdrData method)

 	element (GSASIIscriptable.G2AtomRecord property)

 	eObj (GSASIIobj.ExpressionCalcObj attribute)

 	EvalExpression() (GSASIIobj.ExpressionCalcObj method)

 	export() (GSASIIscriptable.G2PDF method)

 	Export() (GSASIIscriptable.G2PwdrData method)

 	export() (in module GSASIIscriptable)

 	
 	export_CIF() (GSASIIscriptable.G2Phase method)

 	Export_peaks() (GSASIIscriptable.G2PwdrData method)

 	exportersByExtension (in module GSASIIscriptable)

 	exprDict (GSASIIobj.ExpressionCalcObj attribute)

 	expression (GSASIIobj.ExpressionObj attribute)

 	ExpressionCalcObj (class in GSASIIobj)

 	ExpressionObj (class in GSASIIobj)

 	ExtensionValidator() (GSASIIobj.ImportBaseclass method)

F

 	
 	findControl() (GSASIIscriptable.G2Image method)

 	FindFunction() (in module GSASIIobj)

 	fit_fixed_points() (GSASIIscriptable.G2PwdrData method)

 	fmtVarByMode() (GSASIIobj.G2VarObj method)

 	
 	fmtVarDescr() (in module GSASIIobj)

 	freeVars (GSASIIobj.ExpressionObj attribute)

 	from_dict_and_names() (GSASIIscriptable.G2Project class method)

 	fxnpkgdict (GSASIIobj.ExpressionCalcObj attribute)

G

 	
 	G2AtomRecord (class in GSASIIscriptable)

 	G2Exception

 	G2Image (class in GSASIIscriptable)

 	G2ImportException

 	G2ObjectWrapper (class in GSASIIscriptable)

 	G2PDF (class in GSASIIscriptable)

 	G2Phase (class in GSASIIscriptable)

 	G2Project (class in GSASIIscriptable)

 	G2PwdrData (class in GSASIIscriptable)

 	G2RefineCancel

 	G2ScriptException

 	G2SeqRefRes (class in GSASIIscriptable)

 	G2Single (class in GSASIIscriptable)

 	G2VarObj (class in GSASIIobj)

 	GeneratePixelMask() (GSASIIscriptable.G2Image method)

 	GenerateReflections() (in module GSASIIscriptable)

 	GenWildCard() (in module GSASIIobj)

 	get_cell() (GSASIIscriptable.G2Phase method)

 	get_cell_and_esd() (GSASIIscriptable.G2Phase method)

 	(GSASIIscriptable.G2SeqRefRes method)

 	get_Constraints() (GSASIIscriptable.G2Project method)

 	get_Controls() (GSASIIscriptable.G2Project method)

 	get_Covariance() (GSASIIscriptable.G2Project method)

 	(GSASIIscriptable.G2SeqRefRes method)

 	get_Frozen() (GSASIIscriptable.G2Project method)

 	get_ParmList() (GSASIIscriptable.G2Project method)

 	(GSASIIscriptable.G2SeqRefRes method)

 	get_Variable() (GSASIIscriptable.G2Project method)

 	(GSASIIscriptable.G2SeqRefRes method)

 	
 	get_VaryList() (GSASIIscriptable.G2Project method)

 	(GSASIIscriptable.G2SeqRefRes method)

 	get_wR() (GSASIIscriptable.G2PwdrData method)

 	getControl() (GSASIIscriptable.G2Image method)

 	getControls() (GSASIIscriptable.G2Image method)

 	getdata() (GSASIIscriptable.G2PwdrData method)

 	GetDepVar() (GSASIIobj.ExpressionObj method)

 	getDescr() (in module GSASIIobj)

 	getHAPentryList() (GSASIIscriptable.G2Phase method)

 	getHAPentryValue() (GSASIIscriptable.G2Phase method)

 	getHAPvalues() (GSASIIscriptable.G2Phase method)

 	getHistEntryList() (GSASIIscriptable.G2PwdrData method)

 	getHistEntryValue() (GSASIIscriptable.G2PwdrData method)

 	GetIndependentVars() (GSASIIobj.ExpressionObj method)

 	getMasks() (GSASIIscriptable.G2Image method)

 	getPhaseEntryList() (GSASIIscriptable.G2Phase method)

 	getPhaseEntryValue() (GSASIIscriptable.G2Phase method)

 	GetPhaseNames() (in module GSASIIobj)

 	getVarDescr() (in module GSASIIobj)

 	GetVaried() (GSASIIobj.ExpressionObj method)

 	GetVariedVarVal() (GSASIIobj.ExpressionObj method)

 	getVarStep() (in module GSASIIobj)

 	getVary() (GSASIIscriptable.G2Image method)

 	GSAS-II variable naming

 	
 GSASIIobj

 	module

 	
 GSASIIscriptable

 	module

H

 	
 	HAPvalue() (GSASIIscriptable.G2Phase method)

 	HistIdLookup (in module GSASIIobj)

 	histogram() (GSASIIscriptable.G2Project method)

 	histograms() (GSASIIscriptable.G2Phase method)

 	(GSASIIscriptable.G2Project method)

 	(GSASIIscriptable.G2SeqRefRes method)

 	
 	HistRanIdLookup (in module GSASIIobj)

 	histType() (GSASIIscriptable.G2Project method)

 	hold_many() (GSASIIscriptable.G2Project method)

 	HowDidIgetHere() (in module GSASIIobj)

I

 	
 	image() (GSASIIscriptable.G2Project method)

 	image: Image data object description

 	image: Image object descriptions

 	imageMultiDistCalib() (GSASIIscriptable.G2Project method)

 	images() (GSASIIscriptable.G2Project method)

 	import_generic() (in module GSASIIscriptable)

 	ImportBaseclass (class in GSASIIobj)

 	ImportBaseclass.ImportException

 	ImportImage (class in GSASIIobj)

 	ImportPDFData (class in GSASIIobj)

 	ImportPhase (class in GSASIIobj)

 	ImportPowderData (class in GSASIIobj)

 	ImportReflectometryData (class in GSASIIobj)

 	
 	ImportSmallAngleData (class in GSASIIobj)

 	ImportStructFactor (class in GSASIIobj)

 	IndexAllIds() (in module GSASIIobj)

 	initMasks() (GSASIIscriptable.G2Image method)

 	InitParameters() (GSASIIobj.ImportImage method)

 	(GSASIIobj.ImportStructFactor method)

 	installScriptingShortcut() (in module GSASIIscriptable)

 	InstrumentParameters (GSASIIscriptable.G2PwdrData property)

 	Integrate() (GSASIIscriptable.G2Image method)

 	IntMaskMap() (GSASIIscriptable.G2Image method)

 	IntThetaAzMap() (GSASIIscriptable.G2Image method)

 	IPyBrowse() (in module GSASIIscriptable)

 	iter_refinements() (GSASIIscriptable.G2Project method)

L

 	
 	label (GSASIIscriptable.G2AtomRecord property)

 	lastError (GSASIIobj.ExpressionObj attribute)

 	lblLookup (GSASIIobj.ExpressionCalcObj attribute)

 	link_histogram_phase() (GSASIIscriptable.G2Project method)

 	load_iprms() (in module GSASIIscriptable)

 	load_pwd_from_reader() (in module GSASIIscriptable)

 	loadControls() (GSASIIscriptable.G2Image method)

 	LoadDictFromProjFile() (in module GSASIIscriptable)

 	LoadExpression() (GSASIIobj.ExpressionObj method)

 	LoadG2fil() (in module GSASIIscriptable)

 	
 	LoadImage() (GSASIIobj.ImportImage method)

 	loadMasks() (GSASIIscriptable.G2Image method)

 	LoadProfile() (GSASIIscriptable.G2PwdrData method)

 	LookupAtomId() (in module GSASIIobj)

 	LookupAtomLabel() (in module GSASIIobj)

 	LookupHistId() (in module GSASIIobj)

 	LookupHistName() (in module GSASIIobj)

 	LookupPhaseId() (in module GSASIIobj)

 	LookupPhaseName() (in module GSASIIobj)

 	LookupWildCard() (in module GSASIIobj)

M

 	
 	main() (in module GSASIIscriptable)

 	make_empty_project() (in module GSASIIscriptable)

 	make_var_obj() (GSASIIscriptable.G2Project method)

 	MakeUniqueLabel() (in module GSASIIobj)

 	MaskFrameMask() (GSASIIscriptable.G2Image method)

 	
 	MaskThetaMap() (GSASIIscriptable.G2Image method)

 	
 module

 	GSASIIobj

 	GSASIIscriptable

 	mu() (GSASIIscriptable.G2Phase method)

 	mult (GSASIIscriptable.G2AtomRecord property)

O

 	
 	occupancy (GSASIIscriptable.G2AtomRecord property)

 	
 	optimize() (GSASIIscriptable.G2PDF method)

P

 	
 	Parameter dictionary

 	Parameter limits

 	Parameter names

 	Parameters (GSASIIobj.ImportStructFactor attribute)

 	parmDict (GSASIIobj.ExpressionCalcObj attribute)

 	ParseExpression() (GSASIIobj.ExpressionObj method)

 	patchControls() (in module GSASIIscriptable)

 	pdf() (GSASIIscriptable.G2Project method)

 	pdfs() (GSASIIscriptable.G2Project method)

 	PeakList (GSASIIscriptable.G2PwdrData property)

 	Peaks (GSASIIscriptable.G2PwdrData property)

 	
 	Phase information record description

 	Phase object description

 	phase() (GSASIIscriptable.G2Project method)

 	PhaseIdLookup (in module GSASIIobj)

 	PhaseRanIdLookup (in module GSASIIobj)

 	phases() (GSASIIscriptable.G2Project method)

 	Powder data CW Instrument Parameters

 	Powder data object description

 	Powder data TOF Instrument Parameters

 	Powder reflection object description

 	PreSetup() (in module GSASIIscriptable)

 	prmLookup() (in module GSASIIobj)

R

 	
 	ranId (GSASIIscriptable.G2AtomRecord property)

 	ReadCIF() (in module GSASIIobj)

 	Readers (in module GSASIIscriptable)

 	Recalibrate() (GSASIIscriptable.G2Image method)

 	ref_back_peak() (GSASIIscriptable.G2PwdrData method)

 	RefData() (GSASIIscriptable.G2SeqRefRes method)

 	refine() (GSASIIscriptable.G2Project method)

 	(in module GSASIIscriptable)

 	refine_peaks() (GSASIIscriptable.G2PwdrData method)

 	refinement_flags (GSASIIscriptable.G2AtomRecord property)

 	reflections() (GSASIIscriptable.G2PwdrData method)

 	ReInitialize() (GSASIIobj.ImportBaseclass method)

 	(GSASIIobj.ImportImage method)

 	(GSASIIobj.ImportPDFData method)

 	(GSASIIobj.ImportPowderData method)

 	(GSASIIobj.ImportReflectometryData method)

 	(GSASIIobj.ImportSmallAngleData method)

 	(GSASIIobj.ImportStructFactor method)

 	
 	reload() (GSASIIscriptable.G2Project method)

 	removeNonRefined() (in module GSASIIobj)

 	residuals (GSASIIscriptable.G2PwdrData property)

 	reVarDesc (in module GSASIIobj)

 	reVarStep (in module GSASIIobj)

 	Rigid Body Data description

S

 	
 	SampleParameters (GSASIIscriptable.G2PwdrData property)

 	save() (GSASIIscriptable.G2Project method)

 	saveControls() (GSASIIscriptable.G2Image method)

 	SaveDictToProjFile() (in module GSASIIscriptable)

 	SaveProfile() (GSASIIscriptable.G2PwdrData method)

 	seqref() (GSASIIscriptable.G2Project method)

 	set_background() (GSASIIscriptable.G2PDF method)

 	(GSASIIscriptable.G2PwdrData method)

 	set_Controls() (GSASIIscriptable.G2Project method)

 	set_formula() (GSASIIscriptable.G2PDF method)

 	set_Frozen() (GSASIIscriptable.G2Project method)

 	set_HAP_refinements() (GSASIIscriptable.G2Phase method)

 	set_peakFlags() (GSASIIscriptable.G2PwdrData method)

 	set_refinement() (GSASIIscriptable.G2Project method)

 	set_refinements() (GSASIIscriptable.G2Phase method)

 	(GSASIIscriptable.G2PwdrData method)

 	(GSASIIscriptable.G2Single method)

 	setCalibrant() (GSASIIscriptable.G2Image method)

 	setControl() (GSASIIscriptable.G2Image method)

 	setControlFile() (GSASIIscriptable.G2Image method)

 	setControls() (GSASIIscriptable.G2Image method)

 	SetDefaultDData() (in module GSASIIscriptable)

 	SetDefaultSample() (in module GSASIIobj)

 	
 	SetDepVar() (GSASIIobj.ExpressionObj method)

 	setDistRestraintWeight() (GSASIIscriptable.G2Phase method)

 	setHAPentryValue() (GSASIIscriptable.G2Phase method)

 	setHAPvalues() (GSASIIscriptable.G2Phase method)

 	setHistEntryValue() (GSASIIscriptable.G2PwdrData method)

 	setMasks() (GSASIIscriptable.G2Image method)

 	SetNewPhase() (in module GSASIIobj)

 	setPhaseEntryValue() (GSASIIscriptable.G2Phase method)

 	SetPrintLevel() (in module GSASIIscriptable)

 	setSampleProfile() (GSASIIscriptable.G2Phase method)

 	SetupCalc() (GSASIIobj.ExpressionCalcObj method)

 	SetupGeneral() (in module GSASIIscriptable)

 	setVary() (GSASIIscriptable.G2Image method)

 	ShortHistNames (in module GSASIIobj)

 	ShortPhaseNames (in module GSASIIobj)

 	ShowTiming (class in GSASIIobj)

 	Single Crystal data object description

 	Single Crystal reflection object description

 	SortVariables() (in module GSASIIobj)

 	Space Group Data description

 	StripUnicode() (in module GSASIIobj)

 	su (GSASIIobj.ExpressionCalcObj attribute)

 	Superspace Group Data description

T

 	
 	TestFastPixelMask() (GSASIIscriptable.G2Image method)

 	
 	TestIndexAll() (in module GSASIIobj)

 	type (GSASIIscriptable.G2AtomRecord property)

U

 	
 	uiso (GSASIIscriptable.G2AtomRecord property)

 	update_ids() (GSASIIscriptable.G2Project method)

 	UpdateDict() (GSASIIobj.ExpressionCalcObj method)

 	
 	UpdateParameters() (GSASIIobj.ImportStructFactor method)

 	UpdateVariedVars() (GSASIIobj.ExpressionObj method)

 	UpdateVars() (GSASIIobj.ExpressionCalcObj method)

V

 	
 	validateAtomDrawType() (in module GSASIIobj)

 	VarDescr() (in module GSASIIobj)

 	
 	varLookup (GSASIIobj.ExpressionCalcObj attribute)

 	varname() (GSASIIobj.G2VarObj method)

Y

 	
 	y_calc() (GSASIIscriptable.G2PwdrData method)

 \(\renewcommand\AA{\text{Å}}\)

This documentation was prepared from GSAS-II version bfae21 dated 17-May-2024 21:54 with the most recent tag as version #5786

 nav.xhtml

 Table of Contents

 		
 GSAS-II Scripting Manual

 		
 GSAS-II Requirements, Python Packages and External Software

 		
 Supported Platforms

 		
 Version Control

 		
 Python Requirements

 		
 GUI Requirements

 		
 Scripting Requirements

 		
 Optional Python Packages

 		
 Required Binary Files

 		
 Supported Externally-Developed Software

 		
 GSASIIobj: Data objects & Docs

 		
 Summary/Contents

 		
 Variable names in GSAS-II

 		
 Constraints Tree Item

 		
 Covariance Tree Item

 		
 Phase Tree Items

 		
 Rigid Body Objects

 		
 Space Group Objects

 		
 Phase Information

 		
 Atom Records

 		
 Drawing Atom Records

 		
 Rigid Body Insertions

 		
 Powder Diffraction Tree Items

 		
 CW Instrument Parameters

 		
 TOF Instrument Parameters

 		
 Powder Reflection Data Structure

 		
 Single Crystal Tree Items

 		
 Single Crystal Reflection Data Structure

 		
 Image Data Structure

 		
 Parameter Dictionary

 		
 Texture implementation

 		
 ISODISTORT implementation

 		
 Displacive modes

 		
 Occupancy modes

 		
 Mode Computations

 		
 Parameter Limits

 		
 GSASIIobj Classes and routines

 		
 AddPhase2Index()

 		
 AtomIdLookup

 		
 AtomRanIdLookup

 		
 CompileVarDesc()

 		
 CreatePDFitems()

 		
 DefaultControls

 		
 ExpressionCalcObj

 		
 ExpressionObj

 		
 FindFunction()

 		
 G2Exception

 		
 G2RefineCancel

 		
 G2VarObj

 		
 GenWildCard()

 		
 GetPhaseNames()

 		
 HistIdLookup

 		
 HistRanIdLookup

 		
 HowDidIgetHere()

 		
 ImportBaseclass

 		
 ImportImage

 		
 ImportPDFData

 		
 ImportPhase

 		
 ImportPowderData

 		
 ImportReflectometryData

 		
 ImportSmallAngleData

 		
 ImportStructFactor

 		
 IndexAllIds()

 		
 LookupAtomId()

 		
 LookupAtomLabel()

 		
 LookupHistId()

 		
 LookupHistName()

 		
 LookupPhaseId()

 		
 LookupPhaseName()

 		
 LookupWildCard()

 		
 MakeUniqueLabel()

 		
 PhaseIdLookup

 		
 PhaseRanIdLookup

 		
 ReadCIF()

 		
 SetDefaultSample()

 		
 SetNewPhase()

 		
 ShortHistNames

 		
 ShortPhaseNames

 		
 ShowTiming

 		
 SortVariables()

 		
 StripUnicode()

 		
 TestIndexAll()

 		
 VarDescr()

 		
 _lookup()

 		
 fmtVarDescr()

 		
 getDescr()

 		
 getVarDescr()

 		
 getVarStep()

 		
 prmLookup()

 		
 reVarDesc

 		
 reVarStep

 		
 removeNonRefined()

 		
 validateAtomDrawType()

 		
 GSASIIscriptable: Scripting Interface

 		
 Summary/Contents

 		
 Installation of GSASIIscriptable

 		
 Application Interface (API) Summary

 		
 Overview of Classes

 		
 Independent Functions

 		
 Class G2Project

 		
 Class G2Phase

 		
 Class G2PwdrData

 		
 Class G2Single

 		
 Class G2Image

 		
 Class G2PDF

 		
 Class G2SeqRefRes

 		
 Class G2AtomRecord

 		
 Refinement parameters

 		
 Project-level Parameter Dict

 		
 Refinement recipe

 		
 Refinement parameter types

 		
 Specifying Refinement Parameters

 		
 Histogram parameters

 		
 Phase parameters

 		
 Histogram-and-phase parameters

 		
 Histogram/Phase objects

 		
 Access to other parameter settings

 		
 Code Examples

 		
 Shortcut for Scripting Access

 		
 Peak Fitting

 		
 Pattern Simulation

 		
 Simple Refinement

 		
 Sequential Refinement

 		
 Image Processing

 		
 Image Calibration

 		
 Optimized Image Integration

 		
 Multicore Image Integration

 		
 Histogram Export

 		
 Automatic Background

 		
 GSASIIscriptable Command-line Interface

 		
 Parameters in JSON files

 		
 API: Complete Documentation

 		
 G2AtomRecord

 		
 G2Image

 		
 G2ImportException

 		
 G2ObjectWrapper

 		
 G2PDF

 		
 G2Phase

 		
 G2Project

 		
 G2PwdrData

 		
 G2ScriptException

 		
 G2SeqRefRes

 		
 G2Single

 		
 GenerateReflections()

 		
 IPyBrowse()

 		
 LoadDictFromProjFile()

 		
 LoadG2fil()

 		
 PreSetup()

 		
 Readers

 		
 SaveDictToProjFile()

 		
 SetDefaultDData()

 		
 SetPrintLevel()

 		
 SetupGeneral()

 		
 add()

 		
 blkSize

 		
 calcMaskMap()

 		
 calcThetaAzimMap()

 		
 create()

 		
 dictDive()

 		
 dump()

 		
 export()

 		
 exportersByExtension

 		
 import_generic()

 		
 installScriptingShortcut()

 		
 load_iprms()

 		
 load_pwd_from_reader()

 		
 main()

 		
 make_empty_project()

 		
 patchControls()

 		
 refine()

 		
 Indices

 		
 General Index

_static/file.png

_static/G2_html_logo.png
GSAS-II

S
Do n

_static/minus.png

_static/plus.png

